如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,.
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角Q—BP—C的余弦值.
(1)證明過程詳見試題解析;(2)二面角Q—BP—C的余弦值為.
【解析】
試題分析:(1)以點為中心建立空間坐標系,要證平面⊥平面,只需證明PQ⊥DQ,PQ⊥DC即可;(2)先求出平面PBC的和平面PBQ的法向量,兩個法向量所成的角即為二面角Q—BP—C的平面角,然后求出余弦值即可.
試題解析:(1)依題意有Q(1,1,0),C(0,0,1),P(0,2,0).
則
所以
即PQ⊥DQ,PQ⊥DC.故PQ⊥平面DCQ.
又PQ平面PQC,所以平面PQC⊥平面DCQ.
(2)依題意有B(1,0,1),
設是平面PBC的法向量,則
因此可取
設m是平面PBQ的法向量,則
可取
故二面角Q—BP—C的余弦值為
考點:面面垂直的判定定理、二面角的求法、空間坐標系.
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第九章第3課時練習卷(解析版) 題型:解答題
已知△ABC的兩個頂點A(-1,5)和B(0,-1),又知∠C的平分線所在的直線方程為2x-3y+6=0,求三角形各邊所在直線的方程.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第九章第11課時練習卷(解析版) 題型:解答題
如圖,橢圓C:=1(a>b>0)的離心率為,其左焦點到點P(2,1)的距離為.不過原點O的直線l與C相交于A,B兩點,且線段AB被直線OP平分.
(1)求橢圓C的方程;
(2)求△ABP面積取最大值時直線l的方程.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第九章第10課時練習卷(解析版) 題型:解答題
如圖,在平面直角坐標系xOy中,已知橢圓=1的左、右頂點為A、B,右焦點為F.設過點T(t,m)的直線TA、TB與橢圓分別交于點M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1)設動點P滿足PF2-PB2=4,求點P的軌跡;
(2)設x1=2,x2=,求點T的坐標;
(3)設t=9,求證:直線MN必過x軸上的一定點(其坐標與m無關).
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第九章第10課時練習卷(解析版) 題型:填空題
已知雙曲線方程是x2-=1,過定點P(2,1)作直線交雙曲線于P1、P2兩點,并使P(2,1)為P1P2的中點,則此直線方程是____________.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年陜西西工大附中高三上學期第四次適應性訓練理數學卷(解析版) 題型:選擇題
如圖所示,在中,,,高,在內作射線交于點,則的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年陜西省高考前30天數學保溫訓練9平面向量(解析版) 題型:選擇題
設P是△ABC所在平面內的一點,+=2,則( 。
A.+= B.+=
C.+= D.++=
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com