已知垂直平行四邊形所在平面,若,則平行則四邊形一定是
A.正方形B.菱形C.矩形D.梯形
B
此題考查線面垂直的性質(zhì)和判定、平行四邊形是菱形的條件;由,所以是對(duì)角線互相垂直的平行四邊形,所以是菱形,所以選B
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知m、n是兩條不重合的直線,α、β、γ是三個(gè)兩兩不重合的平面,給出下列命題:
①若m∥β,n∥β,m、nα,則α∥β;
②若α⊥γ,β⊥γ,α∩β=m,nγ,則m⊥n;
③若m⊥α,α⊥β,m∥n,則n∥β;
④若n∥α,n∥β,α∩β=m,那么m∥n;
其中所有正確命題的個(gè)數(shù)是
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

正方體中,
(1)求直線和平面所成的角;
(2)M為上一點(diǎn)且=,在上找一點(diǎn)N使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)如圖,在三棱柱中,
每個(gè)側(cè)面均為正方形,為底邊的中點(diǎn),為側(cè)棱的中點(diǎn).
(Ⅰ)求證:∥平面
(Ⅱ)求證:平面;
(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如右下圖,在長(zhǎng)方體ABCD—A1B1C1D1中,已知AB=" 4," AD ="3," AA1= 2。 E、F分別是線段AB、BC上的點(diǎn),且EB= FB=1.
(1) 求二面角C—DE—C1的余弦值;
(2) 求直線EC1與FD1所成的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直線平面,垂足為,正四面體的棱長(zhǎng)為4,在平面內(nèi),
是直線上的動(dòng)點(diǎn),則當(dāng)的距離為最大時(shí),正四面體在平面上的射影面
積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知、、、分別是正方體的棱、的中點(diǎn)。
求證:①∥平面
②平面∥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知直角三角形ABC的斜邊長(zhǎng)AB="2," 現(xiàn)以斜邊AB為軸旋轉(zhuǎn)一周,得旋轉(zhuǎn)體,當(dāng)∠A=30°時(shí),求此旋轉(zhuǎn)體的體積與表面積的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
如圖5所示:在邊長(zhǎng)為的正方形中,,且,,
分別交、兩點(diǎn), 將正方形沿折疊,使得重合,
構(gòu)成如圖6所示的三棱柱 .
( I )在底邊上有一點(diǎn),且::, 求證:平面 ;
( II )求直線與平面所成角的正弦值

查看答案和解析>>

同步練習(xí)冊(cè)答案