(本小題滿分14分)
已知直角三角形ABC的斜邊長(zhǎng)AB="2," 現(xiàn)以斜邊AB為軸旋轉(zhuǎn)一周,得旋轉(zhuǎn)體,當(dāng)∠A=30°時(shí),求此旋轉(zhuǎn)體的體積與表面積的大小.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,在棱長(zhǎng)為2的正方體中,是底面的中心,分別是的中點(diǎn),那么異面直線所成角的余弦值等于 (     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知垂直平行四邊形所在平面,若,則平行則四邊形一定是
A.正方形B.菱形C.矩形D.梯形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

四棱錐P—ABCD中,ABCD為矩形,△PAD為等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分別為PC和BD的中點(diǎn).
(1)求證:EF∥面PAD;
(2)求證:面PDC⊥面PAB;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分12分)
如圖,四棱錐P—ABCD中,底面ABCD是邊長(zhǎng)為的正方形E,F(xiàn)分別為PC,BD的中點(diǎn),側(cè)面PAD⊥底面ABCD,且PA=PD=AD.
(Ⅰ)求證:EF//平面PAD;
(Ⅱ)求三棱錐C—PBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐S-ABCD的底面是矩形,AB1,AD2,SA1,   且SA⊥底面ABCD,若P為直線BC上的一點(diǎn),使得
(1)求證:P為線段BC的中點(diǎn);
(2)求點(diǎn)P到平面SCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分9分)
如圖所示的多面體中,已知直角梯形和矩形所在的平面互相垂直,,,,.        
(Ⅰ)證明:平面;
(Ⅱ)設(shè)二面角的平面角為,求的值;
(Ⅲ)的中點(diǎn),在上是否存在一點(diǎn),使得∥平面?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知的平面直觀圖A1B1C1是邊長(zhǎng)為2的正三角形,則原的面積是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四棱錐P—ABCD,側(cè)面PAD為邊長(zhǎng)等于2的正三角形,底面ABCD為菱形,.
(I)證明:
(II)若PB = 3,求四棱錐P—ABCD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案