【題目】假設有一套住房的房價從2002年的20萬元上漲到2012年的40萬元,下表給出了兩種價格增長方式,其中是按直線上升的房價,是按指數(shù)增長的房價,t2002年以來經(jīng)過的年數(shù).

t

0

5

10

15

20

/萬元

20

30

40

50

60

/萬元

20

40

80

(1)求函數(shù)的解析式;

(2)求函數(shù)的解析式;

(3)完成上表空格中的數(shù)據(jù),并在同一直角坐標系中畫出兩個函數(shù)的圖象,然后比較兩種價格增長方式的差異.

【答案】(1)(2)(3)見解析

【解析】

(1)再代入計算即可.

(2)(,且),再根據(jù)計算即可.

(3)根據(jù)(1)(2)中的函數(shù)解析式畫出對應的圖像,再根據(jù)圖像辨析即可.

解:(1)設,則,

.

(2)設(,且),則.

.

(3)圖象如圖.

由圖象可以看出,在前10年,按增長的價格始終高于按增長的價格,但10年后,的價格增長速度很快,遠遠超出的價格并且時間越長,差別越大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓的任意三個頂點為頂點的三角形的面積是

1求橢圓的方程;

2)設是橢圓的右頂點,點軸上若橢圓上存在點,使得,求點橫坐標的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中, ,平面平面.

(1)求證: ;

(2)若,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為 為參數(shù)),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為,若直線與曲線相切;

(1)求曲線的極坐標方程;

(2)在曲線上取兩點, 與原點構成,且滿足,求面積的最大值.

【答案】(1);(2)

【解析】試題分析:(1)利用極坐標與直角坐標的互化公式可得直線的直角坐標方程為,

,消去參數(shù)可知曲線是圓心為,半徑為的圓,由直線與曲線相切,可得: ;則曲線C的方程為, 再次利用極坐標與直角坐標的互化公式可得

可得曲線C的極坐標方程.

(2)由(1)不妨設M(),,(),

,

由此可求面積的最大值.

試題解析:(1)由題意可知直線的直角坐標方程為,

曲線是圓心為,半徑為的圓,直線與曲線相切,可得: ;可知曲線C的方程為,

所以曲線C的極坐標方程為

.

(2)由(1)不妨設M(),,(),

,

,

時, ,

所以△MON面積的最大值為.

型】解答
結(jié)束】
23

【題目】已知函數(shù)的定義域為;

(1)求實數(shù)的取值范圍;

(2)設實數(shù)的最大值,若實數(shù), , 滿足,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】上饒某購物中心在開業(yè)之后,為了解消費者購物金額的分布,在當月的電腦消費小票中隨機抽取張進行統(tǒng)計,將結(jié)果分成5組,分別是,制成如圖所示的頻率分布直方圖(假設消費金額均在元的區(qū)間內(nèi)).

1)若在消費金額為元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票均來自元區(qū)間的概率;

2)為做好五一勞動節(jié)期間的商場促銷活動,策劃人員設計了兩種不同的促銷方案:

方案一:全場商品打8.5折;

方案二:全場購物滿200元減20元,滿400元減50元,滿600元減80元,滿800元減120元,以上減免只取最高優(yōu)惠,不重復減免.利用直方圖的信息分析哪種方案優(yōu)惠力度更大,并說明理由(直方圖中每個小組取中間值作為該組數(shù)據(jù)的替代值).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=logax+1),gx)=2loga2x+t)(tR),其中x[0,15]a0,且a1

1)若1是關于x的方程fx)﹣gx)=0的一個解,求t的值;

2)當0a1時,不等式fx)≥gx)恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的離心率為,且過點.

(1)求橢圓的方程;

(2)設為橢圓上任一點, 為其右焦點,點滿足.

①證明: 為定值;

②設直線與橢圓有兩個不同的交點,與軸交于點.若成等差數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)當時,求曲線處的切線方程;

)若函數(shù)在定義域內(nèi)不單調(diào),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中,角A,B,C的對邊分別為a,bc.已知2cos(BC)14cosBcosC

)求A;

)若a2,△ABC的面積為2,求bc

查看答案和解析>>

同步練習冊答案