【題目】某大型超市公司計劃在市新城區(qū)開設(shè)分店,為確定在新城區(qū)開設(shè)分店的個數(shù),該公司對該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)統(tǒng)計后得到下列信息(其中表示在該區(qū)開設(shè)分店的個數(shù),表示這個分店的年收入之和):

分店個數(shù)(個)

2

3

4

5

6

年收入(萬元)

250

300

400

450

600

(Ⅰ)該公司經(jīng)過初步判斷,可用線性回歸模型擬合的關(guān)系,求關(guān)于的回歸方程;

(Ⅱ)假設(shè)該公司每年在新城區(qū)獲得的總利潤(單位:萬元)與之間的關(guān)系為,請根據(jù)(Ⅰ)中的線性回歸方程,估算該公司在新城區(qū)開設(shè)多少個分店時,才能使新城區(qū)每年每個分店的平均利潤最大.

參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為: ,.

【答案】(Ⅰ)(Ⅱ)見解析

【解析】

()由題意結(jié)合回歸方程系數(shù)的計算公式即可確定直線的回歸方程;

()結(jié)合()的結(jié)論首先求得利潤函數(shù),然后結(jié)合均值不等式的結(jié)論即可確定利潤取得最大值的分店個數(shù)和最大的利潤值.

(Ⅰ),.

由公式: ,

,

;

(Ⅱ)由題意:,

所以,年平均利潤,

當(dāng)且僅當(dāng)時,取得等號,

所以,該公司在新城區(qū)開設(shè)4個分店時,新城區(qū)每年每個分店的平均利潤最大為45萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是函數(shù)的極值點(diǎn).

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)求證:函數(shù)存在唯一的極小值點(diǎn),且.

(參考數(shù)據(jù):,,其中為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省確定從2021年開始,高考采用“”的模式,取消文理分科,即“3”包括語文、數(shù)學(xué)、英語,為必考科目:“1”表示從物理、歷史中任選一門;“2”則是從生物、化學(xué)、地理、政治中選擇兩門,共計六門考試科目.某高中從高一年級2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進(jìn)行調(diào)查.

(1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);

(2)學(xué)校計劃在高二上學(xué)期開設(shè)選修中的“物理”和“歷史”兩個科目,為了了解學(xué)生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學(xué)生講行問卷調(diào)查(假定每名學(xué)生在這兩個科目中必須選擇一個科目且只能選擇一個科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;

性別

選擇物理

選擇歷史

總計

男生

50

女生

30

總計

(3)在(2)的條件下,從抽取的選擇“物理”的學(xué)生中按分層抽樣抽取6人,再從這6名學(xué)生中抽取2人,對“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.

參考公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著生活水平的提高,人們的休閑方式也發(fā)生了變化.某機(jī)構(gòu)隨機(jī)調(diào)查了個人,其中男性占調(diào)查人數(shù)的.已知男性中有一半的人的休閑方式是運(yùn)動,而女性只有人的休閑方式是運(yùn)動.

(1)完成下列列聯(lián)表:

運(yùn)動

非運(yùn)動

總計

男性

女性

總計

n

(2)若在犯錯誤的概率不超過的前提下,可認(rèn)為“性別與休閑方式有關(guān)”, 那么本次被調(diào)查的人數(shù)至少有多少?

(3)根據(jù)(2)的結(jié)論,本次被調(diào)查的人中,至少有多少人的休閑方式是運(yùn)動?

參考公式,其中

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,平面,,,點(diǎn),分別為,的中點(diǎn).

(1)求證:平面;

(2)是線段上的點(diǎn),且平面.

①確定點(diǎn)的位置;

②求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司代理銷售某種品牌小商品,該產(chǎn)品進(jìn)價為5元/件,銷售時還需交納品牌使用費(fèi)3元/件,售價為元/件,其中,且.根據(jù)市場調(diào)查,當(dāng),且時,每月的銷售量(萬件)與成正比;當(dāng),且時,每月的銷售量(萬件)與成反比.已知售價為15元/件時,月銷售量為9萬件.

(1)求該公司的月利潤(萬件)與每件產(chǎn)品的售價(元)的函數(shù)關(guān)系式;

(2)當(dāng)每件產(chǎn)品的售價為多少元時,該公司的月利潤最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】南通風(fēng)箏是江蘇傳統(tǒng)手工藝品之一.現(xiàn)用一張長2 m,寬1.5 m的長方形牛皮紙ABCD裁剪風(fēng)箏面,裁剪方法如下:分別在邊ABAD上取點(diǎn)E,F,將三角形AEF沿直線EF翻折到處,點(diǎn)落在牛皮紙上,沿裁剪并展開,得到風(fēng)箏面,如圖1.

(1)若點(diǎn)E恰好與點(diǎn)B重合,且點(diǎn)BD上,如圖2,求風(fēng)箏面的面積;

(2)當(dāng)風(fēng)箏面的面積為時,求點(diǎn)AB距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以,,,,為頂點(diǎn)的五面體中,平面平面,是邊長為的正三角形,直線與平面所成角為.

(I)求證:;

(Ⅱ)若,四邊形為平行四邊形,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的奇函數(shù)滿足.且當(dāng)時,.若對于任意,都有,則實(shí)數(shù)的取值范圍為________

查看答案和解析>>

同步練習(xí)冊答案