已知集合A={x|x2-2x-3≤0},集合B={x|[x-(m-2)][x-(m+2)]≤0,m∈R}.
(1)若A∩B=[0,3],求實(shí)數(shù)m的值;
(2)若A⊆∁RB,求實(shí)數(shù)m的取值范圍.
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:(1)求出A與B中不等式的解集,根據(jù)A與B的交集確定出m的值即可;
(2)表示出B的補(bǔ)集,根據(jù)A為B補(bǔ)集的子集,確定出m的范圍即可.
解答: 解:(1)由A中不等式變形得:(x-3)(x+1)≤0,
解得:-1≤x≤3,即A=[-1,3];
由B中不等式,得到m-2≤x≤m+2,即B=[m-2,m+2],
∵A∩B=[0,3],
∴m-2=0,即m=2;
(2)∵全集R,B=[m-2,m+2],
∴∁RB=(-∞,m-2)∪(m+2,+∞),
∵A⊆∁RB,
∴m+2<-1或m-2>3,
解得:m>5或m<-3.
點(diǎn)評(píng):此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,a+b=1,則
1
a2
+
1
b2
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)化簡(jiǎn)lg22+lg25+2lg2•lg5+eln2+(-8) 
2
3
;
(2)若loga
4
5
<1(a>0,且a≠1),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c和一次函數(shù)g(x)=-bx,其中a,b,c∈R,且滿足a<b<c,f(1)=0.
(Ⅰ)證明:函數(shù)f(x)與g(x)圖象交于不同的兩點(diǎn)A,B.
(Ⅱ)若函數(shù)F(x)=f(x)-g(x)在[2,3]上的最小值是-19,最大值為-6,試求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x-x2,求方程f(x)=0在區(qū)間[-1,0]上實(shí)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1).
(1)求f(log2x)的最小值及對(duì)應(yīng)的x值;
(2)若不等式f(log2x)>f(1)的解集記為A,不等式log2[f(x)]<f(1)的解集記為B,求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)用定義法證明函數(shù)f(x)=
1-x
x-
2
在(
2
,+∞)上是增函數(shù);
(2)判斷函數(shù)g(x)=
ex+e-x
ex-e-x
的奇偶性,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知扇形的周長(zhǎng)為40cm,當(dāng)它的半徑和圓心角取什么值時(shí),才能使扇形的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2sin(
π
3
x+φ)(|φ|<
π
2
),若x=1是它一條對(duì)稱軸,則φ=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案