【題目】設函數(shù)f(x)=ax∈Z),曲線y=f(x)在點(2,f(2))處的切線方程為y=3.
(1)求f(x)的解析式;
(2)證明:函數(shù)y=f(x)的圖象是一個中心對稱圖形,并求其對稱中心;
(3)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x所圍成的三角形的面積為定值,并求出此定值.
【答案】(1);(2)見解析;(3)2
【解析】分析: (1)先求導=a再根據已知得到解之即得a,b的值即得f(x)的解析式.(2)先證明函數(shù)y=f(x)的圖象是一個中心對稱圖形,再求其對稱中心.(3) 在曲線y=f(x)上任取一再求其切線方程y,最后求圍成的三角形的面積為定值, 并求出此定值.
詳解:(1)=a
于解得
因為a,b∈Z,所.
所以f(x)=x
(2)已知函數(shù)y1=x,y2,
所以函數(shù)g(x)=x,其圖象是以原點為中心的中心對稱圖形,
而由f(x)=x-1,函數(shù)g(x)的圖象向右平移1個單位長度,再向上平移1個單位長度即得到函數(shù)f(x)的圖象.
故函數(shù)f(x)的圖象是以點(1,1)為中心的中心對稱圖形.
(3)在曲線y=f(x)上任取一
由=1,過此點的切線方程為y
令x=1,得yx=1的交點
令x=y,得y=2x0-1,切線與直線y=x的交點為(2x0-1,2x0-1).
由于直線x=1與直線y=x的交點為(1,1),
從而它們所圍成的三角形的面積為
所以所圍成的三角形的面積為定值2.
科目:高中數(shù)學 來源: 題型:
【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據一組樣本數(shù)據(xi , yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為 =0.85x﹣85.71,則下列結論中不正確的是( )
A.y與x具有正的線性相關關系
B.回歸直線過樣本點的中心( , )
C.若該大學某女生身高增加1cm,則其體重約增加0.85kg
D.若該大學某女生身高為170cm,則可斷定其體重必為58.79kg
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,且).
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)求函數(shù)在上的最大值.
【答案】(Ⅰ)的單調增區(qū)間為,單調減區(qū)間為.(Ⅱ)當時, ;當時, .
【解析】【試題分析】(I)利用的二階導數(shù)來研究求得函數(shù)的單調區(qū)間.(II) 由(Ⅰ)得在上單調遞減,在上單調遞增,由此可知.利用導數(shù)和對分類討論求得函數(shù)在不同取值時的最大值.
【試題解析】
(Ⅰ),
設 ,則.
∵, ,∴在上單調遞增,
從而得在上單調遞增,又∵,
∴當時, ,當時, ,
因此, 的單調增區(qū)間為,單調減區(qū)間為.
(Ⅱ)由(Ⅰ)得在上單調遞減,在上單調遞增,
由此可知.
∵, ,
∴.
設,
則 .
∵當時, ,∴在上單調遞增.
又∵,∴當時, ;當時, .
①當時, ,即,這時, ;
②當時, ,即,這時, .
綜上, 在上的最大值為:當時, ;
當時, .
[點睛]本小題主要考查函數(shù)的單調性,考查利用導數(shù)求最大值. 與函數(shù)零點有關的參數(shù)范圍問題,往往利用導數(shù)研究函數(shù)的單調區(qū)間和極值點,并結合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關系,進而確定參數(shù)的取值范圍;或通過對方程等價變形轉化為兩個函數(shù)圖象的交點問題.
【題型】解答題
【結束】
22
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .
(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標方程;
( Ⅱ ) 設直線 與軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用年的隔熱層,每厘米厚的隔熱層建造成本為萬元.該建筑物每年的能源消耗費用(單位:萬元)與隔熱層厚度(單位:厘米)滿足關系:.若不建隔熱層,每年的能源消耗費用為萬元.設為隔熱層建造費用與年的能源消耗費用之和.
(1)求的值及的表達式;
(2)隔熱層修建多厚時,總費用最小,并求其最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據分組區(qū)間為
(1)求頻率分布直方圖中的值;
(2)估計該企業(yè)的職工對該部門評分不低于80的概率;
(3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高二理(1)班學習興趣小組為了調查學生喜歡數(shù)學課的人數(shù)比例,設計了如下調查方法:
(1)在本校中隨機抽取100名學生,并編號1,2,3,…,100;
(2)在箱內放置了兩個黃球和三個紅球,讓抽取到的100名學生分別從箱中隨機摸出一球,記住其顏色并放回;
(3)請下列兩類學生站出來,一是摸到黃球且編號數(shù)為奇數(shù)的學生,二是摸到紅球且不喜歡數(shù)學課的學生。
若共有32名學生站出來,那么請用統(tǒng)計的知識估計該校學生中喜歡數(shù)學課的人數(shù)比例大約是( )
A. 80%B. 85%C. 90%D. 92%
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次數(shù)學測驗后,班級學委對選答題的選題情況進行統(tǒng)計,如下表:
幾何證 明選講 | 極坐標與 參數(shù)方程 | 不等式 選講 | 合計 | |
男同學 | 12 | 4 | 6 | 22 |
女同學 | 0 | 8 | 12 | 20 |
合計 | 12 | 12 | 18 | 42 |
(1)在統(tǒng)計結果中,如果把幾何證明選講和極坐標與參數(shù)方程稱為“幾何類”,把不等式選講稱為“代數(shù)類”,我們可以得到如下2×2列聯(lián)表.
幾何類 | 代數(shù)類 | 合計 | |
男同學 | 16 | 6 | 22 |
女同學 | 8 | 12 | 20 |
合計 | 24 | 18 | 42 |
能否認為選做“幾何類”或“代數(shù)類”與性別有關,若有關,你有多大的把握?
(2)在原始統(tǒng)計結果中,如果不考慮性別因素,按分層抽樣的方法從選做不同選答題的同學中隨機選出7名同學進行座談.已知這名學委和2名數(shù)學課代表都在選做“不等式選講”的同學中.
①求在這名學委被選中的條件下,2名數(shù)學課代表也被選中的概率;
②記抽取到數(shù)學課代表的人數(shù)為,求的分布列及數(shù)學期望.
下面臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校藝術節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“是或作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中的值;
(2)根據頻率分布直方圖,估計這100名學生語文成績的平均分,眾數(shù),中位數(shù);
(3)若這100名學生語文成績某些分數(shù)段的人數(shù)()與數(shù)學成績相應分數(shù)段的人數(shù)()之比如下表所示,求數(shù)學成績在[50,90)之外的人數(shù).
分數(shù)段 | [50,60) | [60,70) | [70,80) | [80,90) |
1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com