【題目】某校高二理(1)班學(xué)習(xí)興趣小組為了調(diào)查學(xué)生喜歡數(shù)學(xué)課的人數(shù)比例,設(shè)計(jì)了如下調(diào)查方法:
(1)在本校中隨機(jī)抽取100名學(xué)生,并編號(hào)1,2,3,…,100;
(2)在箱內(nèi)放置了兩個(gè)黃球和三個(gè)紅球,讓抽取到的100名學(xué)生分別從箱中隨機(jī)摸出一球,記住其顏色并放回;
(3)請(qǐng)下列兩類學(xué)生站出來(lái),一是摸到黃球且編號(hào)數(shù)為奇數(shù)的學(xué)生,二是摸到紅球且不喜歡數(shù)學(xué)課的學(xué)生。
若共有32名學(xué)生站出來(lái),那么請(qǐng)用統(tǒng)計(jì)的知識(shí)估計(jì)該校學(xué)生中喜歡數(shù)學(xué)課的人數(shù)比例大約是( )
A. 80%B. 85%C. 90%D. 92%
【答案】A
【解析】
先分別計(jì)算號(hào)數(shù)為奇數(shù)的概率、摸到黃球的概率、摸到紅球的概率,從而可得摸到黃球且號(hào)數(shù)為奇數(shù)的學(xué)生,進(jìn)而可得摸到紅球且不喜歡數(shù)學(xué)課的學(xué)生人數(shù),由此可得估計(jì)該校學(xué)生中喜歡數(shù)學(xué)課的人數(shù)比例.
解:由題意,號(hào)數(shù)為奇數(shù)的概率為0.5,摸到黃球的概率為,摸到紅球的概率為
那么按概率計(jì)算摸到黃球且號(hào)數(shù)為奇數(shù)的學(xué)生有個(gè)
共有32名學(xué)生站出來(lái),則有12個(gè)摸到紅球且不喜歡數(shù)學(xué)課的學(xué)生,
不喜歡數(shù)學(xué)課的學(xué)生有:,
喜歡數(shù)學(xué)課的有80個(gè),
估計(jì)該校學(xué)生中喜歡數(shù)學(xué)課的人數(shù)比例大約是:.
故選:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市出租車起步價(jià)為10元,最長(zhǎng)可租乘3km(含3km),以后每1km為1.6元(不足1km,按1km計(jì)費(fèi)),若出租車行駛在不需等待的公路上,則出租車的費(fèi)用y(元)與行駛的里程x(km)之間的函數(shù)圖象大致為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(I)已知函數(shù)f(x)=rx﹣xr+(1﹣r)(x>0),其中r為有理數(shù),且0<r<1.
(1)求f(x)的最小值;
(2)試用(1)的結(jié)果證明如下命題:設(shè)a1≥0,a2≥0,b1 , b2為正有理數(shù),若b1+b2=1,則a1b1a2b2≤a1b1+a2b2;
(3)請(qǐng)將(2)中的命題推廣到一般形式,并用數(shù)學(xué)歸納法證明你所推廣的命題.注:當(dāng)α為正有理數(shù)時(shí),有求導(dǎo)公式(xα)r=αxα﹣1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】天氣預(yù)報(bào)說(shuō),在今后的三天中,每一天下雨的概率均為40%.現(xiàn)采用隨機(jī)模擬試驗(yàn)的方法估計(jì)這三天中恰有兩天下雨的概率:先利用計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三個(gè)隨機(jī)數(shù)作為一組,代表這三天的下雨情況.經(jīng)隨機(jī)模擬試驗(yàn)產(chǎn)生了如下20組隨機(jī)數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計(jì),這三天中恰有兩天下雨的概率近似為
A.0.35 B.0.25 C.0.20 D.0.15
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ax∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3.
(1)求f(x)的解析式;
(2)證明:函數(shù)y=f(x)的圖象是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心;
(3)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍成的三角形的面積為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=2x的焦點(diǎn)為F,平行于x軸的兩條直線l1 , l2分別交C于A,B兩點(diǎn),交C的準(zhǔn)線于P,Q兩點(diǎn).
(1)若F在線段AB上,R是PQ的中點(diǎn),證明AR∥FQ;
(2)若△PQF的面積是△ABF的面積的兩倍,求AB中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面命題中,正確的命題有( )
①若n1,n2分別是不同平面α,β的法向量,則n1∥n2α∥β;
②若n1,n2分別是平面α,β的法向量,則α⊥βn1·n2=0;
③若n是平面α的法向量,b,c是α內(nèi)兩個(gè)不共線的向量,a=λb+μc(λ,μ∈R),則n·a=0;
④若兩個(gè)平面的法向量不垂直,則這兩個(gè)平面一定不垂直.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:
①若函數(shù)在區(qū)間上單調(diào)遞增,則;
②若 (且),則的取值范圍是;
③若函數(shù),則對(duì)任意的,都有;
④若 (且),在區(qū)間上單調(diào)遞減,則.
其中所有正確命題的序號(hào)是______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;
(2)求不等式f(x)-f(x-2)>3的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com