A. | $\frac{1}{24}$ | B. | $\frac{1}{6}$ | C. | $\frac{4}{3}$ | D. | 12 |
分析 根據(jù)分段函數(shù)的性質(zhì),把x=1+log23分別反復(fù)代入f(x-1)直到x≤0,再代入相應(yīng)的函數(shù)解析式,從而求解;
解答 解:∵2<1+log23<3,
∴-1<1+log23-3<0,
即f(1+log23)=f[(1+log23)-1)]=f(log23)
∵log23>0
f(log23)=f(log23-1),∵log23-1>0
∴f(log23-1)=f(log23-2),
∵log23-2=log2$\frac{3}{4}$≤0,
∴f(log23-2)=f(log2$\frac{3}{4}$)=($\frac{1}{2}$)${\;}^{lo{g}_{2}}$${\;}^{\frac{3}{4}}$=2${\;}^{lo{g}_{2}\frac{4}{3}}$=$\frac{4}{3}$,
故選:C
點評 本題主要考查函數(shù)值的計算,根據(jù)對數(shù)的性質(zhì)以及分段函數(shù)的表達(dá)式,需要反復(fù)代入求解;考查學(xué)生的計算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m⊥α,n∥β且α⊥β,則m⊥n | B. | m⊥α,n⊥β且α⊥β,則m⊥n | ||
C. | α∩β=m,n⊥m且α⊥β,則n⊥α | D. | m∥α,n∥β且α∥β,則m∥n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,-$\sqrt{3}$) | B. | (-1,$\sqrt{3}$) | C. | ($\sqrt{3}$,-1) | D. | (-$\sqrt{3}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,e] | B. | [e,+∞) | C. | (0,e] | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<1 | B. | a<2 | C. | a>1 | D. | a>2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{5}{18}$ | C. | $\frac{2}{9}$ | D. | $\frac{11}{36}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com