已知拋物線y=x2被直線y=x+m 所截得的弦AB的長(zhǎng)為
10
,求m的值.
考點(diǎn):直線與圓錐曲線的關(guān)系
專題:計(jì)算題,作圖題,圓錐曲線中的最值與范圍問(wèn)題
分析:由題意作出圖象,設(shè)A(x1,y1),B(x2,y2);由所截得的弦AB的長(zhǎng)為
10
可得
2
|x1-x2|=
10
,從而可得|x1-x2|=
5
,借助韋達(dá)定理簡(jiǎn)化運(yùn)算.
解答: 解:作圖如右圖,設(shè)A(x1,y1),B(x2,y2);
由y=x2與y=x+m聯(lián)立消y可得,
x2-x-m=0,
則△=1+4m>0,即m>-
1
4
;
由所截得的弦AB的長(zhǎng)為
10
可得,
2
|x1-x2|=
10
,
又由韋達(dá)定理可得,
x1+x2=1,x1•x2=-m,
則(x1-x22=(x1+x22-4x1•x2
=1+4m=5,
解得,m=1.
點(diǎn)評(píng):本題考查了直線與圓錐曲線的交點(diǎn)問(wèn)題,運(yùn)用了韋達(dá)定理簡(jiǎn)化運(yùn)算,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

算式(-1.8)0×(
1
3
)-2+
493
×
3
的值為( 。
A、3B、18C、27D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(π+α)=-
3
5
,且α為第二象限的角.求
(1)sin2α的值;  
(2)
sin(2π-α)+cos(π-α)
sin(2π+α)-cos(-α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|y=
2x+1
3-x
},B={y|y=x2-2x+2},則A∩B=( 。
A、∅B、[1,3)
C、(3,+∞)D、[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)無(wú)重復(fù)數(shù)字的五位數(shù),如果滿足萬(wàn)位和百位上的數(shù)字都比千位上的數(shù)字小,百位和個(gè)位上的數(shù)字都比十位上的數(shù)字小,則這個(gè)五位數(shù)稱為“倒W型數(shù)”,問(wèn):一共有多少個(gè)倒W型數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的不等式x2-(a+
4
a
)x+4>0在[1,+∞)上恒成立,試求參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=
1
2
xsinx.下列命題正確的是
 

①函數(shù)y=f(x)的圖象是中心對(duì)稱圖形,對(duì)稱中心是原點(diǎn);
②對(duì)任意實(shí)數(shù)x,|f(x)|≤
1
2
|x|均成立;
③函數(shù)y=f(x)的圖象與x軸有無(wú)窮多個(gè)公共點(diǎn),且任意相鄰兩公共點(diǎn)間的距離相等;
④函數(shù)y=f(x)的圖象與直線y=
1
2
x有無(wú)窮多個(gè)公共點(diǎn),且任意相鄰兩公共點(diǎn)間的距離相等;
⑤函數(shù)y=f(x)有無(wú)數(shù)個(gè)極大值點(diǎn),任意相鄰極大值點(diǎn)間的距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果非零實(shí)數(shù)a、b、c兩兩不相等且2b=a+c,證明:
2
b
=
1
a
+
1
c
不成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,∠ACB=45°,BC=4,過(guò)動(dòng)點(diǎn)A作AD⊥BC,垂足D在線段BC上且異于點(diǎn)B,連接AB,沿AD將△ABD折起,使∠BDC=90°(如圖2所示)

(1)當(dāng)BD的長(zhǎng)為多少時(shí),△BCD的體積最大;
(2)當(dāng)△BCD的體積最大時(shí),設(shè)點(diǎn)M為棱AC的中點(diǎn),試求直線BM與CD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案