若實數(shù)x,y滿足約束條件
x+y-2≤0
x-2y-2≤0
2x-y+2≥0
,則z=|x+2|+|y-2|的取值范圍為( 。
A、[2,4]
B、[4,6]
C、[2,6]
D、[0,6]
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用目標函數(shù)的幾何意義,進行求最值即可.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
則-2≤x≤2,-2≤y≤2,
則z=|x+2|+|y-2|=x+2-(y-2)=x-y+4,
由z=x-y+4得y=x-z+4,平移直線y=x-z+4,
由平移可知當直線y=x-z+4經(jīng)過點A(0,2)時,
直線y=x-z+4的截距最大,此時z取得最小值,為z=0-2+4=2,
當直線y=x-z+4經(jīng)過點B(2,0)時,
直線y=x-z+4的截距最小,此時z取得最大值,為z=2-0+4=6
則2≤z≤6,
故選:C
點評:本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標函數(shù)的幾何意義,將目標函數(shù)進行化簡是解決問題的關(guān)鍵,利用數(shù)形結(jié)合是解決問題的基本方法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

方程x2+2x-y2+2y=0表示的曲線是(  )
A、圓B、點(-1,1)
C、兩條直線D、以上均不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=sinx+cosx+1,x∈(0,2π)的單調(diào)區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列-1,3,-5,7,…,它的一個通項公式an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-4+
9
x+1
(x>-1),當f(x)取最小值時,x=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

畫出函數(shù)=
2x(x≤0)
log2x(x>0)
的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x-1
x+2
(x>0)的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求適合下列條件的圓錐曲線的標準方程:
(1)長軸長是短軸長的2倍,且經(jīng)過點P(2,0)的橢圓;
(2)焦點在y軸上,a=2
5
,經(jīng)過點A(2,5)的雙曲線;
(3)頂點在原點,對稱軸是坐標軸,并經(jīng)過點P(1,-2)的拋物線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式|x+5|>3的解集是( 。
A、{xx、-8<x<8}
B、{x|-2<x<8}
C、{x|x<-2或x>8}
D、{x|x<-8或x>-2}

查看答案和解析>>

同步練習冊答案