求與橢圓
x2
25
+
y2
9
=1
有公共焦點(diǎn),且離心率為2的雙曲線方程.
橢圓
x2
25
+
y2
9
=1
的焦點(diǎn)坐標(biāo)為(-4,0)和(4,0)
設(shè)雙曲線方程
x2
a2
-
y2
b2
=1(a>0,b>0)

c=4,e=
c
a
=2

∴a=2,b2=c2-a2=12,
∴所求雙曲線方程為
x2
4
-
y2
12
=1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的中心在原點(diǎn)O,其中一條準(zhǔn)線方程為x=
3
2
,且與橢圓
x2
25
+
y2
13
=1
有共同的焦點(diǎn).
(1)求此雙曲線的標(biāo)準(zhǔn)方程;
(2)(普通中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點(diǎn),試問(wèn):是否存在實(shí)數(shù)k,使得以弦AB為直徑的圓過(guò)點(diǎn)O?若存在,求出k的值,若不存在,請(qǐng)說(shuō)明理由.
(重點(diǎn)中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點(diǎn),C是直線L1:y=mx+6上任一點(diǎn)(A、B、C三點(diǎn)不共線)試問(wèn):是否存在實(shí)數(shù)k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們知道,判斷直線與圓的位置關(guān)系可以用圓心到直線的距離進(jìn)行判別,那么直線與橢圓的位置關(guān)系有類似的判別方法嗎?請(qǐng)同學(xué)們進(jìn)行研究并完成下面問(wèn)題.
(1)設(shè)F1、F2是橢圓M:
x2
25
+
y2
9
=1
的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線L:
2
x-y+
5
=0的距離分別為d1、d2,試求d1•d2的值,并判斷直線L與橢圓M的位置關(guān)系.
(2)設(shè)F1、F2是橢圓M:
x2
a2
+
y2
b2
=1
(a>b>0)的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線L:mx+ny+p=0(m、n不同時(shí)為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1•d2的值.
(3)試寫出一個(gè)能判斷直線與橢圓的位置關(guān)系的充要條件,并證明.
(4)將(3)中得出的結(jié)論類比到其它曲線,請(qǐng)同學(xué)們給出自己研究的有關(guān)結(jié)論(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線M的中心在原點(diǎn),并以橢圓
x2
25
+
y2
13
=1的焦點(diǎn)為焦點(diǎn),以拋物線y2=-2
3
x的準(zhǔn)線為右準(zhǔn)線.
(1)求雙曲線M的方程;
(2)設(shè)直線l:y=kx+3與雙曲線M相交于A、B兩點(diǎn),O是原點(diǎn).求k值,使
OA
OB
=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線M的中心在原點(diǎn),并以橢圓
x2
25
+
y2
13
=1的焦點(diǎn)為焦點(diǎn),以拋物線y2=-2
3
x的準(zhǔn)線為右準(zhǔn)線.
(Ⅰ)求雙曲線M的方程;
(Ⅱ)設(shè)直線l:y=kx+3 與雙曲線M相交于A、B兩點(diǎn),O是原點(diǎn).
①當(dāng)k為何值時(shí),使得
OA
OB
=0?
②是否存在這樣的實(shí)數(shù)k,使A、B兩點(diǎn)關(guān)于直線y=mx+12對(duì)稱?若存在,求出k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線C以橢圓
x2
25
+
y2
9
=1
的兩個(gè)焦點(diǎn)為焦點(diǎn),且雙曲線C的焦點(diǎn)到其漸近線的距離為2
3

(1)求雙曲線C的方程;
(2)若直線y=kx+m(k≠0,m≠0)與雙曲線C交于不同的兩點(diǎn)E,F(xiàn),且E,F(xiàn)都在以P(0,3)為圓心的同一圓上,求實(shí)數(shù)m的取信范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案