分析 (Ⅰ)先由BC⊥平面D1DCC1⇒BC⊥DE.再利用△DD1E為等腰直角三角形⇒∠D1ED=45°以及∠C1EC=45°可得DE⊥EC,合在一起可得平面EDB⊥平面EBC;
(理科生做)(Ⅱ)先過E在平面D1DCC1中作EO⊥DC于O⇒EO⊥面ABCD;再O在平面DBC中作OF⊥DB于F,利用三垂線定理極其逆定理可得EF⊥BD.所以∠EFO為二面角E-DB-C的平面角.再利用平面幾何知識求出∠EFO的正切值即可;
(文科生做)(Ⅱ)由VE-DBA=VA-DBE,利用等體積法來求A到面EDB的距離即可.
解答 (Ⅰ)證明:在長方體ABCD-A1B1C1D1中,
AB=2,BB1=BC=1,E為D1C1的中點(diǎn).
∴△DD1E為等腰直角三角形,∠D1ED=45°.
同理∠C1EC=45°.
∴∠DEC=90°,即DE⊥EC.
在長方體ABCD-A1B1C1D1中,BC⊥平面D1DCC1,
又DE?平面D1DCC1,
∴BC⊥DE.又EC∩BC=C,∴DE⊥平面EBC.
∵DE?平面DEB,∵平面DEB⊥平面EBC.
(理科生做)(Ⅱ)解:如圖,過E在平面D1DCC1中作EO⊥DC于O.
在長方體ABCD-A1B1C1D1中,∵面ABCD⊥面D1DCC1,∴EO⊥面ABCD.
過O在平面DBC中作OF⊥DB于F,連接EF,
∴EF⊥BD,∠EFO為二面角E-DB-C的平面角.
利用平面幾何知識可得OF=$\frac{1}{\sqrt{5}}$,OE=1,tan∠EFO=$\sqrt{5}$.
∴二面角E-DB-C的正切值為$\sqrt{5}$.
(文科生做)(Ⅱ)解:設(shè)點(diǎn)A到平面DBE的距離為d,
∵VE-DBA=VA-DBE,
∴$\frac{1}{3}×\frac{1}{2}×1×2×1$=$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×\sqrt{3}$d
∴d=$\frac{\sqrt{6}}{3}$,
故A到面EDB的距離為$\frac{\sqrt{6}}{3}$.
點(diǎn)評 本題綜合考查了面面垂直的判定以及二面角的求法和點(diǎn)到面的距離計(jì)算.在求點(diǎn)到面的距離時(shí),如果直接法不好求的話,一般轉(zhuǎn)化為棱錐的高利用等體積法來求.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{3}π,12π$ | B. | $4\sqrt{3}π,12π$ | C. | $2\sqrt{3}π,6π$ | D. | $4\sqrt{3}π,6π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | 2 | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$) | B. | ($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$) | C. | ($\frac{1}{4}$,$\frac{3\sqrt{3}}{4}$) | D. | (1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $-\sqrt{3}$ | C. | $-\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com