已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),
a
b
之間有關(guān)系|k
a
+
b
|=
3
|
a
-k
b
|,(k≥2).
(1)用k表示
a
b
;
(2)求
a
b
的最小值,并求此時(shí)
a
b
的夾角的余弦值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專(zhuān)題:平面向量及應(yīng)用
分析:(1)利用數(shù)量積運(yùn)算性質(zhì)即可得出.
(2)利用導(dǎo)數(shù)可得函數(shù)f(k)的單調(diào)性,即可得出最小值,再利用數(shù)量積定義即可得出.
解答: 解:(1)|
a
|=
cos2α+sin2α
=1,同理|
b
|
=1.
∵|k
a
+
b
|=
3
|
a
-k
b
|,(k≥2).
k2
a
2
+
b
2
+2k
a
b
=3(
a
2
-2k
a
b
+k2
b
2
)
,
k2+1+2k
a
b
=3(1+k2-2k
a
b
)

解得
a
b
=
k2+1
4k

(2)當(dāng)k≥2時(shí),函數(shù)f(k)=
k2+1
4k
,
∴f′(k)=
k2-1
4k2
>0,
∴f(k)在[2,+∞)上為增函數(shù).
a
b
的最小值為f(2)=
22+1
4•2
=
5
8
,
又∵
a
b
=|
a
|•|
b
|•cos<
a
b
>,
5
8
=1×1×cos<
a
,
b
>,
∴cos<
a
b
>=
5
8
,此時(shí)a與b的夾角余弦值為
5
8
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)可得函數(shù)的單調(diào)性極值與最值、數(shù)量積定義及其運(yùn)算性質(zhì),考查了推理能力和計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P為圓x2+y2=1上一個(gè)動(dòng)點(diǎn),M為點(diǎn)P在y軸上的投影,動(dòng)點(diǎn)Q滿足
QM
+2
MP
=0.
(1)求動(dòng)點(diǎn)Q的軌跡C的方程;
(2)一條直線l過(guò)點(diǎn)(0,-
1
2
),交曲線C于A、B兩點(diǎn),且A、B同在以點(diǎn)D(0,1)為圓心的圓上,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了搞好某次大型會(huì)議的接待工作,組委會(huì)在某校招募了12名男志愿者和18名女志愿者,將這30名志愿者的身高編成如圖所示的莖葉圖(單位:cm)若身高在175cm以上(包括175cm)定義為“高個(gè)子”,身高在175cm以下(不包括175cm)定義為“非高個(gè)子”,且只有“女高子”才擔(dān)任“禮儀小姐”.
(1)求12名男志愿者的中位數(shù);
(2)如果用分層抽樣的方法從所有“高個(gè)子”“非高個(gè)子”中共抽取5人,再?gòu)倪@5個(gè)人中選2人,那么至少有一個(gè)是“高個(gè)子”的概率是多少?
(3)若從所有“高個(gè)了”中選3名志愿者,用X表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫(xiě)出X的分布列,并求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x≠0.求
1+x2+x4
-
1+x4
x
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)經(jīng)過(guò)A(-1,0),B(5,0),C(0,-
5
2
)三點(diǎn).
(1)求f(x)的解析式;
(2)求f(2),畫(huà)出函數(shù)f(x)的圖象,并根據(jù)其圖象出該函數(shù)的定義域與值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示.AD是△ABC的BC邊上的中線,E是BD的中點(diǎn),BA=BD.求證:AC=2AE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,某人計(jì)劃用籬笆圍成一個(gè)一邊靠墻(墻的長(zhǎng)度沒(méi)有限制)的矩形菜園.設(shè)菜園的長(zhǎng)為xm,寬為ym.若菜園面積為72m2,則x,y為何值時(shí),可使所用籬笆總長(zhǎng)最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A、B、C是三角形的三內(nèi)角,a、b、c是三內(nèi)角對(duì)應(yīng)的三邊,已知
tanA
tanB
=
2c-b
b
,求角A的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一組數(shù)據(jù)23,27,20,18,x,12,它們的中位數(shù)是21,即x是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案