已知函數(shù)f(x)=ex+ax-1
(1)求f(x)的增區(qū)間;
(2)若f(x)在(0,+∞)上恒正,求a的取值范圍.
考點:利用導數(shù)研究函數(shù)的極值
專題:計算題,導數(shù)的概念及應用
分析:(1)求導數(shù),分類討論,利用導數(shù)為正,即可求f(x)的增區(qū)間;
(2)注意到f(0)=0,分類討論,利用f(x)在(0,+∞)上恒正,即可求a的取值范圍.
解答: 解:(1)∵f(x)=ex+ax-1,
∴f′(x)=ex+a
∴a≥0時,增區(qū)間為(-∞,+∞);a<0時,增區(qū)間為(ln(-a),+∞);
(2)注意到f(0)=0,
a≥-1時,f′(x)=ex+a>0,
∴f(x)在(0,+∞)上為增函數(shù),∴f(x)>0恒成立;
當a<-1時,f(x)在(0,ln(-a))上為減函數(shù),所以f(ln(-a))<0,
綜上,a≥-1.
點評:本題考查導數(shù)知識的運用,考查函數(shù)的單調(diào)性,考查分類討論的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知全集U={x|log2x≤2},集合A={x|0<x<3},B={x|-3<x≤3},求A∩B、∁UA、(∁UA)∩B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果對任意的x,y∈R都有f(x+y)=f(x)•f(y),且f(1)=2,
(1)求f(0),f(2),f(3)的值和
f(2)
f(1)
+
f(3)
f(2)
+
f(4)
f(3)
+…+
f(2013)
f(2012)
的值;
(2)若當x>0時,有f(x)>1成立,試判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-alnx(a∈R)
(1)當a=2時,求曲線y=f(x)在點A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3-
3
2
(a+2)x2+6x+b在x=2處取得極值.
(Ⅰ)求a的值及f(x)的單調(diào)區(qū)間;
(Ⅱ)若x∈[1,4]時,不等式f(x)>b2恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-ln(x+a)(a是常數(shù)). 
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當y=f(x)在x=1處取得極值時,若關于x的方程f(x)+2x=x2+b在[
1
2
,2]上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍;
(3)求證:當n≥2,n∈N*時,(1+
1
22
)(1+
1
32
)…(1+
1
n2
)<e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)的導數(shù):
(1)y=2x3+log2x;
(2)y=
cosx
sinx
+2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex-ax2(a∈R).
(1)求函數(shù)f(x)在點P(0,1)處的切線方程;
(2)若函數(shù)f(x)為R上的單調(diào)遞增函數(shù),試求a的范圍;
(3)若函數(shù)f(x)不出現(xiàn)在直線y=x+1的下方,試求a的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1
2
xsin2x在x=
π
2
的切線方程為
 

查看答案和解析>>

同步練習冊答案