已知雙曲線E:
x2
a2
-
y2
b2
=1(a>0,b>0)
的漸近線與拋物線C:y=x2+1相切于第一象限內(nèi)的點(diǎn)P.
(I)求點(diǎn)P的坐標(biāo)及雙曲線E的離心率;
(II)記過點(diǎn)P的漸近線為l1,雙曲線的右焦點(diǎn)為F,過點(diǎn)F且垂直于l1的直線l2與雙曲線E交于A、B兩點(diǎn).當(dāng)△PAB的面積為
40
3
時(shí),求雙曲線E的方程.
(I)設(shè)切點(diǎn)P的坐標(biāo)為(x0,
x20
+1)
,則切線的斜率為(x2+1)′|x=x0=2x0…(1分)
因?yàn)殡p曲線E的漸近線y=
b
a
x
與拋物線C相切,所以2x0=
b
a

x20
+1=
b
a
x0

由①、②消去x0得:(
b
2a
)2+1=
b2
2a2
,即b2=4a2,…(3分)
又c2=a2+b2,所以c2-a2=4a2,c2=5a2,
e2=
c2
a2
=5,e=
5
.…(4分)
由①、②還可得
x20
+1=2
x20
,即x0=±1,
又P在第一象限,從而切點(diǎn)P的坐標(biāo)為(1,2)…%分
(II)由(I)得l1的方程為y=2x,點(diǎn)F的坐標(biāo)為(
5
a,0)
,雙曲線E的方程為4x2-y2=4a2
因?yàn)閘1⊥l2,所以l2的方程為y=-
1
2
(x-
5
a)

y=-
1
2
(x-
5
a)
4x2-y2=4a2
消去y得:15x2+2
5
ax-21a2=0

從而xA+xB=-
2
5
15
a,xAxB=-
7
5
a2

|AB|=
1+(-
1
2
)
2
(xA+xB)2-4xAxB
=
5
4
(-
2
5
15
a)
2
+
28
5
a2
=
8
3
a
.…(7分)
由點(diǎn)到直線的距離公式得△PAB的高h=|a-
5
|
.…(8分)
所以△PAB的面積S=
4
3
a|a-
5
|=
40
3

當(dāng)0<a<5時(shí),a(a-
5
)=10
,即a2-
5
a+10=0
,無實(shí)數(shù)解;
當(dāng)a≥5時(shí),a(a-
5
)=10
,即a2-
5
a+10=0
,
解得a=2
5
a=-
5
(舍去)…(11分)
a=2
5
,b=2a=4
5
,
所以所求方程為
x2
20
-
y2
80
=1
.…(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知雙曲線
x2
a 2
-
y2
b 2
=1
(b>a>0),0為坐標(biāo)原點(diǎn),離心率e=2,點(diǎn)M(
5
,
3
)在雙曲線上.
(1)求雙曲線的方程;
(2)若直線l與雙曲線交于P、Q兩點(diǎn),且
OP
OQ
=0,求:|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•許昌三模)已知雙曲線c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距為c,過左焦點(diǎn)且斜率為1的直線與雙曲線C的左、右支各有一個(gè)交點(diǎn),若拋物線y2=4cx的準(zhǔn)線被雙曲線截得的線段長大于
2
2
3
be2.(e為雙曲線c的離心率),則e的取值范同是
2
3
2
,
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距為c,過左焦點(diǎn)且斜率為1的直線與雙曲線C的左、右支各有一個(gè)交點(diǎn),若拋物線y2=4cx的準(zhǔn)線被雙曲線截得的線段長大于
2
2
3
be2.(e為雙曲線c的離心率),則e的取值范同是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案