設(shè)方程 tan(x+)-tan(x-) =-2的解集為M,方程=-2的解集為N, 則有

[  ]

A.M = N   B.M  * N  C.M  * N  D.M = Φ

答案:B
解析:

解: ∵ 

=  = 

∴方程可變形為cos2x =-1

2x = 2kπ+π,  x = kπ+, k∈Z.

經(jīng)檢驗(yàn): M = {x│x = kπ+,k∈Z}

而 kπ+(k∈Z)不是第二個(gè)方程的解.

∴M  N 選B


提示:

 = 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=asinωx+bcosωx(ω>0)的周期T=π,最大值為f(
π12
)=4
,
(1)求ω、a、b的值;
(2)若α、β為方程f(x)=0的兩根,且α、β的終邊不共線,求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)(幾何證明選講)如圖,AB是半圓O的直徑,點(diǎn)C在半圓上,CD⊥AB,垂足為D,且AD=5DB,設(shè)∠COD=θ,則tanθ的值為
5
2
5
2

(2)(坐標(biāo)系與參數(shù)方程)圓O1和圓O2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=-4sinθ,則經(jīng)過兩圓圓心的直線的直角坐標(biāo)方程為
x-y-2=0
x-y-2=0

(3)(不等式選講)若不等式|3x-b|<4的解集中的整數(shù)有且僅有0,1,2,則b的取值范圍是
(2,4)
(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=2+t
y=1-2t
(t為參數(shù)),設(shè)直線l的傾斜角為θ,則tanθ=( 。
A、2B、-2C、5D、-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆山東省聊城市高二第四次模塊檢測(cè)理科數(shù)學(xué)卷(解析版) 題型:解答題

已知方程tan2x一tan x+1=0在x[0,n)( nN*)內(nèi)所有根的和記為an

(1)寫出an的表達(dá)式;(不要求嚴(yán)格的證明)

(2)記Sn = a1 + a2 +…+ an求Sn

(3)設(shè)bn =(kn一5) ,若對(duì)任何nN* 都有anbn,求實(shí)數(shù)k的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案