已知定義域?yàn)镽的函數(shù)f(x)=
1
|x-1
(x≠1)
1       (x=1)
,若關(guān)于x的方程f2(x)+bf(x)+c=0有3個(gè)不同的實(shí)根x1,x2,x3,則x12+x22+x32等于( 。
A、13
B、
2b2+2
b2
C、5
D、
3c2+2
c2
分析:作出f(x)的圖象,由圖知,只有當(dāng)f(x)=1時(shí)有兩解,欲使關(guān)于x的方程f2(x)+bf(x)-1=0有3個(gè)不同的實(shí)數(shù)解x1,x2,x3,則必有f(x)=1這個(gè)等式,由根與系數(shù)的關(guān)系得另一個(gè)根是f(x)=-1,從而得x=0.故可得三個(gè)根的平方和,問(wèn)題得到解決.
解答:解:作出f(x)的圖象
由圖知,只有當(dāng)f(x)=1時(shí)有兩解;
∵關(guān)于x的方程f2(x)+bf(x)+c=0有3個(gè)不同的實(shí)數(shù)解x1,x2,x3
∴必有f(x)=1,從而x1=1,x2=2.
由根與系數(shù)的關(guān)系得另一個(gè)根是f(x)=-1,從而得x3=0.
故可得x12+x22+x32=5.
故選C.精英家教網(wǎng)
點(diǎn)評(píng):本題考查復(fù)合函數(shù)的零點(diǎn)問(wèn)題,復(fù)合函數(shù)的零點(diǎn)的問(wèn)題,必須要將f(x)看成整體,利用整體思想解決.?dāng)?shù)形結(jié)合也是解決此題的關(guān)鍵,利用函數(shù)的圖象可以加強(qiáng)直觀性,同時(shí)也便于問(wèn)題的理解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•石家莊二模)已知定義域?yàn)镽的函數(shù)f(x)在(1,+∞)上為減函數(shù),且函數(shù)y=f(x+1)為偶函數(shù),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)滿足f(x)f(x+2)=5,若f(2)=3,則f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)在(4,+∞)上為減函數(shù),且函數(shù)y=f(x)的對(duì)稱軸為x=4,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
-2x+a2x+1
是奇函數(shù)
(1)求a值;
(2)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
(3)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍;
(4)設(shè)關(guān)于x的函數(shù)F(x)=f(4x-b)+f(-2x+1)有零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)滿足f(4-x)=-f(x),當(dāng)x<2時(shí),f(x)單調(diào)遞減,如果x1+x2>4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案