若函數(shù)f(x)=x+
a
x
(a>0)在[2,+∞)上有最小值,且不是單調(diào)函數(shù),則a的一個可能值是
 
考點:函數(shù)的最值及其幾何意義
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)數(shù)f(x)=x+
a
x
(a>0)[
a
,+∞)上單調(diào)遞增,(0,
a
)上單調(diào)遞減,當x=
a
時,取最小值,可得到
a
>2,即可得到答案.
解答: 解:∵數(shù)f(x)=x+
a
x
(a>0)
∴[
a
,+∞)上單調(diào)遞增,(0,
a
)上單調(diào)遞減,當x=
a
時,取最小值,
∵f(x)在[2,+∞)上有最小值,且不是單調(diào)函數(shù),
a
>2,
a>4
故答案為:5
點評:本題考查了函數(shù)的單調(diào)性,最值的幾何意義,屬于容易題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知P為拋物線y2=4x上的一點,記P到此拋物線的準線的距離為d1,P到直線x+2y+12=0的距離為d2,則d1+d2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,Sn是它的前n項和.
(1)若3a1=5a3,求
S1
S5

(2)若{bn}也是等差數(shù)列,其前n項和Tn,且
Sn
Tn
=
2n
3n+1
,求
an
bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

角α的終邊上有一點P(m,5),且cosα=
m
13
,m≠0,求sinα+cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex+a
ex-a
(a∈R).
(1)當a≥0時,根據(jù)a的不同取值討論函數(shù)y=f(x)的奇偶性,并說明理由.
(2)當a=-1時,如對任意的t∈R,不等式f(t2-2t+1)+f(-k-2t2)≤0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)的定義域為{x|x≠0,x∈R},在y軸右側(cè)的圖象如圖,且f(3)=0,則不等式f(x)<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線m,n,l,若m∥n,n∩l=P,則m與l的位置關(guān)系是( 。
A、異面直線
B、相交直線
C、平行直線
D、相交直線或異面直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a,b是異面直線,下面四個命題:
①過a至少有一個平面平行于b; 
②過a至少有一個平面垂直于b;
③至多有一條直線與a,b都垂直;
④至少有一個平面與a,b都平行.
其中正確命題的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+1
x+a
(a≠
1
2
).
(1)若a=-1,證明f(x)=
2x+1
x+a
在區(qū)間(1,+∞)上是減函數(shù);
(2)若函數(shù)f(x)=
2x+1
x+a
在區(qū)間(-1,+∞)上是單調(diào)函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案