分析:本題考查的是指數(shù)比較大小的問題.在解答時,應充分考慮同底數(shù)的指數(shù)函數(shù)單調性、中間量在比較大小中的作用,然后逐一排查即可.
解答:解:由題意可知:對
()-0.1<()0.2,可以考慮函數(shù)
y=()x,由于函數(shù)在實數(shù)集上為減函數(shù),且-0.1<0.2,∴
()-0.1>()0.2,故A錯誤;
對
()-2<()-1,可以考慮函數(shù)
y=()x,由于函數(shù)在實數(shù)集上為增函數(shù),且-2<-1,∴
()-2<()-1成立;
對
()2>π0,可以考慮函數(shù)
y=()x,由于函數(shù)在實數(shù)集上為減函數(shù),且2>0,∴
()2< 1,故C不成立;
對2
-1.2>2
0.1,可以考慮函數(shù)y=2
x,由于函數(shù)在實數(shù)集上為增函數(shù),且-1.2<0.1,∴2
-1.2<2
0.1故D不成立.
故選B.
點評:本題考查的是指數(shù)比較大小的問題.在解答的過程當中充分體現(xiàn)了函數(shù)的單調性知識、數(shù)形結合的思想以及問題轉化的能力.值得同學們體會和反思.