設(shè)A、B是x軸上的兩點(diǎn),點(diǎn)P的橫坐標(biāo)為2,且|PA|=|PB|,若直線PA的方程為x-y+1=0,則直線PB的方程是( )
A.x+y-5=0
B.2x-y-1=0
C.2y-x-4=0
D.2x+y-7=0
【答案】分析:求出PA的斜率,PB的傾斜角,求出P的坐標(biāo),然后求出直線PB的方程.
解答:解:由于直線PA的傾斜角為45°,且|PA|=|PB|,
故直線PB的傾斜角為135°,
又當(dāng)x=2時(shí),y=3,即P(2,3),
∴直線PB的方程為y-3=-(x-2),即x+y-5=0.
故選A
點(diǎn)評(píng):本題考查與直線關(guān)于點(diǎn)、直線對(duì)稱的直線方程,考查邏輯推理能力,計(jì)算能力,轉(zhuǎn)化思想的應(yīng)用,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)F在x軸正半軸上,設(shè)A、B是拋物線C上的兩個(gè)動(dòng)點(diǎn)(AB不垂直于x軸),且|AF|+|BF|=8,線段AB的中垂線恒過(guò)定點(diǎn)Q(6,0),求此拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線C:
x2
2
-y2=1
的左、右頂點(diǎn)分別為A1、A2,垂直于x軸的直線a與雙曲線C交于不同的兩點(diǎn)S、T.
(1)求直線A1S與直線A2T的交點(diǎn)H的軌跡E的方程;
(2)設(shè)A,B是曲線E上的兩個(gè)動(dòng)點(diǎn),線段AB的中垂線與曲線E交于P,Q兩點(diǎn),直線l:x=
1
2
,線段AB的中點(diǎn)M在直線l上,若F(1,0),求
FP
FQ
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)Fx軸正半軸上,設(shè)AB是拋物線C上的兩個(gè)動(dòng)點(diǎn)(AB不垂直于x軸),且|AF|+|BF|=8,線段AB的垂直平分線恒過(guò)定點(diǎn)Q(6,0),求此拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)Fx軸正半軸上,設(shè)A、B是拋物線C上的兩個(gè)動(dòng)點(diǎn)(AB不垂直于x軸),且|AF|+|BF|=8,線段AB的垂直平分線恒過(guò)定點(diǎn)Q(6,0),求此拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)F在x軸正半軸上,設(shè)A,B是拋物線C上的兩個(gè)動(dòng)點(diǎn)(AB不垂直于x軸),且|AF|+|BF|=8,線段AB的垂直平分線恒經(jīng)過(guò)定點(diǎn)Q(6,0),求此拋物線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案