20.設(shè)a=${∫}_{0}^{π}$(cosx-sinx)dx,則二項(xiàng)式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展開式中含x2項(xiàng)的系數(shù)為192.

分析 根據(jù)微積分基本定理首先求出a的值,然后再根據(jù)二項(xiàng)式的通項(xiàng)公式求出r的值,問題得以解決.

解答 解:由于a=${∫}_{0}^{π}$(cosx-sinx)dx=(sinx+cosx)|${\;}_{0}^{π}$=-1-1=-2,
∴(-2$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6=(2$\sqrt{x}$+$\frac{1}{\sqrt{x}}$)6 的通項(xiàng)公式為 Tr+1=26-rC6r•x3-r
令3-r=2,求得r=1,故含x2項(xiàng)的系數(shù)為26-1C61=192.
故答案為:192

點(diǎn)評 本題主要考查定積分、二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開式的通項(xiàng)公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若cos($\frac{π}{8}$-α)=$\frac{1}{6}$,則cos($\frac{3π}{4}$+2α)的值為( 。
A.$\frac{17}{18}$B.-$\frac{17}{18}$C.$\frac{18}{19}$D.-$\frac{18}{19}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在正四棱錐P-ABCD中,AB=2,PA=$\sqrt{6}$,E是棱PC上的點(diǎn),過AE作平面分別與棱PB、PD交于M、N兩點(diǎn),且$\frac{PM}{PB}$=$\frac{PN}{PD}$=$\frac{2}{3}$.
(1)若$\frac{PE}{PC}$=λ,試猜想λ的值,并證明猜想結(jié)果;
(2)求四棱錐P-AMEN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.等差數(shù)列{an}的前n項(xiàng)和為Sn,且S5=15,a2=5,則公差d等于( 。
A.-3B.-2C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在某單位的職工食堂中,食堂每天以3元/個(gè)的價(jià)格從面包店購進(jìn)面包,然后以5元/個(gè)的價(jià)格出售.如果當(dāng)天賣不完,剩下的面包以1元/個(gè)的價(jià)格賣給飼料加工廠.根據(jù)以往統(tǒng)計(jì)資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進(jìn)了90個(gè)面包,以x(單位:個(gè),60≤x≤110)表示面包的需求量,T(單位:元)表示利潤.
(Ⅰ)求T關(guān)于x的函數(shù)解析式;
(Ⅱ)根據(jù)直方圖估計(jì)利潤T不少于100元的概率;
(Ⅲ)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量x∈[60,70),則取x=65,且x=65的概率等于需求量落入[60,70)的頻率),求T的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某生產(chǎn)車間的甲、乙兩位工人生產(chǎn)同一種零件,這種零件的標(biāo)準(zhǔn)尺寸為85mm,現(xiàn)分別從他們生產(chǎn)的零件中各隨機(jī)抽取8件檢測,其尺寸用莖葉圖表示如圖(單位:mm),則估計(jì)( 。
A.甲、乙生產(chǎn)的零件尺寸的中位數(shù)相等
B.甲、乙生產(chǎn)的零件質(zhì)量相當(dāng)
C.甲生產(chǎn)的零件質(zhì)量比乙生產(chǎn)的零件質(zhì)量好
D.乙生產(chǎn)的零件質(zhì)量比甲生產(chǎn)的零件質(zhì)量好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖1,在矩形ABCD中,AB=4,AD=2,E是CD的中點(diǎn),將△ADE沿AE折起,得到如圖2所示的四棱錐D1-ABCE,其中平面D1AE⊥平面ABCE.
(Ⅰ)證明:BE⊥平面D1AE;
(Ⅱ)求三棱錐C-BD1E的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=2lnx+$\frac{1}{x}$-mx(m∈R).
(Ⅰ)當(dāng)m=-1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若f(x)在(0,+∞)上為單調(diào)遞減,求m的取值范圍;
(Ⅲ)設(shè)0<a<b,求證:$\frac{lnb-lna}{b-a}<\frac{1}{{\sqrt{ab}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.秉承提升學(xué)生核心素養(yǎng)的理念,學(xué)校開設(shè)以提升學(xué)生跨文化素養(yǎng)為核心的多元文化融合課程,選某藝術(shù)課程的學(xué)生唱歌、跳舞至少會一項(xiàng),已知會唱歌的有2人,會跳舞的有5人,現(xiàn)從中選2人,設(shè)ξ為選出的人中既會唱歌又會跳舞的人數(shù),其P(ξ>0)=$\frac{7}{10}$.
(Ⅰ)求選該藝術(shù)課程的學(xué)生人數(shù);
(Ⅱ)寫出ξ的概率分布列并計(jì)算Eξ.

查看答案和解析>>

同步練習(xí)冊答案