已知函數(shù)y="Asin(ωx+φ)" (A>0,ω>0,|φ|<π)的 一段圖象如圖所示
(1)求函數(shù)的解析式;
(2)求這個(gè)函數(shù)的單調(diào)增區(qū)間。
(1)(2)
解析試題分析:(1)由圖像的振幅可求,由圖像可知其周期,再用周期求,最后將圖中的一個(gè)點(diǎn)代入可求。(2)將整體角代入正弦的單調(diào)增區(qū)間,求的范圍及為這個(gè)函數(shù)的增區(qū)間。
試題解析:解:(1)由圖可知A=3
T==π,又,故ω=2
所以y=3sin(2x+φ),把代入得:
故,∴,k∈Z
∵|φ|<π,故k=1, ∴
(2)由題知
解得:
故這個(gè)函數(shù)的單調(diào)增區(qū)間為
考點(diǎn):1求三角函數(shù)解析式;2正弦的單調(diào)區(qū)間。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知a=(2cosx,cos2x),b=(sinx,-),f(x)=a·b.
(1)求f(x)的振幅、周期,并畫(huà)出它在一個(gè)周期內(nèi)的圖象;
(2)說(shuō)明它可以由函數(shù)y=sinx的圖象經(jīng)過(guò)怎樣的變換得到.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=2sin xcos x+2cos2x-,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)在銳角△ABC中,若f(A)=1,·=,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知α=,回答下列問(wèn)題.
(1)寫(xiě)出所有與α終邊相同的角;
(2)寫(xiě)出在(-4π,2π)內(nèi)與α終邊相同的角;
(3)若角β與α終邊相同,則是第幾象限的角?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(x)=+2cos2x.
(1)求f(x)的最大值,并寫(xiě)出使f(x)取最大值時(shí)x的集合;
(2)已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f(B+C)=,b+c=2,求a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=2sin2-cos 2x-1(x∈R).
(1)若函數(shù)h(x)=f(x+t)的圖象關(guān)于點(diǎn)對(duì)稱(chēng),且t∈(0,π),求t的值;
(2)設(shè)p:x∈,q:|f(x)-m|<3,若p是q的充分不必要條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=cos+2sin2x,x∈R.
(1)求函數(shù)f(x)的最小正周期及對(duì)稱(chēng)軸方程;
(2)當(dāng)x∈時(shí),求函數(shù)f(x)的最大值和最小值及相應(yīng)的x值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的圖象與y軸的交點(diǎn)為,它在y軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為
(1)求的解析式及的值;
(2)若銳角滿(mǎn)足的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com