【題目】如圖,橢圓C: =1(a>b>0)的右頂點為A(2,0),左、右焦點分別為F1、F2 , 過點A且斜率為 的直線與y軸交于點P,與橢圓交于另一個點B,且點B在x軸上的射影恰好為點F1
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過點P且斜率大于 的直線與橢圓交于M,N兩點(|PM|>|PN|),若SPAM:SPBN=λ,求實數(shù)λ的取值范圍.

【答案】(Ⅰ)解:因為BF1⊥x軸,得到點 ,

所以 ,所以橢圓C的方程是

(Ⅱ)因為 ,

所以 .由(Ⅰ)可知P(0,﹣1),設MN方程:y=kx﹣1,M(x1,y1),N(x2,y2),

聯(lián)立方程 得:(4k2+3)x2﹣8kx﹣8=0.即得 (*)

,有 ,

代入(*)可得:

因為 ,有

且λ>2

綜上所述,實數(shù)λ的取值范圍為


【解析】(Ⅰ)利用已知條件列出方程組,求解橢圓的幾何量,然后求解橢圓C的方程.

(Ⅱ)利用三角形的面積的比值,推出線段的比值,得到 .設MN方程:y=kx﹣1,M(x1,y1),N(x2,y2),聯(lián)立方程 ,利用韋達定理,求出 ,解出 ,將 橢圓方程,然后求解實數(shù)λ的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知A是雙曲線 =1(a>0,b>0)的左頂點,F(xiàn)1 , F2分別為左、右焦點,P為雙曲線上一點,G是△F1PF2的重心,若 ,| |= ,| |+| |=8,則雙曲線的標準方程為(
A.x2 =1
B. ﹣y2=1
C. =1
D.x2 =1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四面體A﹣BCD中,AB=CD=10,AC=BD=2 ,AD=BC=2 ,則四面體A﹣BCD外接球的表面積為(
A.50π
B.100π
C.200π
D.300π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐E﹣ABCD中,底面ABCD為正方形,AE⊥平面CDE,已知AE=DE=2,F(xiàn)為線段DF的中點. (I)求證:BE∥平面ACF;
(II)求平面BCF與平面BEF所成銳二面角的余弦角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】體積為 的正三棱錐A﹣BCD的每個頂點都在半徑為R的球O的球面上,球心O在此三棱錐內部,且R:BC=2:3,點E為線段BD上一點,且DE=2EB,過點E作球O的截面,則所得截面圓面積的取值范圍是(
A.[4π,12π]
B.[8π,16π]
C.[8π,12π]
D.[12π,16π]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了得到函數(shù)y= sin(2x﹣ )的圖象,只需將函數(shù)y=sinxcosx的圖象(
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,輸出S的值為(
A.ln4
B.ln5
C.ln 5﹣ln4
D.ln 4﹣ln 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程
已知直線l過定點P(1,1),且傾斜角為 ,以坐標原點為極點,x軸的正半軸為極軸的坐標系中,曲線C的極坐標方程為
(1)求曲線C的直角坐標方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于不同的兩點A,B,求|AB|及|PA||PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】渝州集團對所有員工進行了職業(yè)技能測試從甲、乙兩部門中各任選10名員工的測試成績(單位:分)數(shù)據(jù)的莖葉圖如圖所示.
(1)若公司決定測試成績高于85分的員工獲得“職業(yè)技能好能手”稱號,求從這20名員工中任選三人,其中恰有兩人獲得“職業(yè)技能好能手”的概率;
(2)公司結合這次測試成績對員工的績效獎金進行調整(績效獎金方案如表),若以甲部門這10人的樣本數(shù)據(jù)來估計該部門總體數(shù)據(jù),且以頻率估計概率,從甲部門所有員工中任選3名員工,記績效獎金不小于3a的人數(shù)為ξ,求ξ的分布列及數(shù)學期望.

分數(shù)

[60,70)

[70,80)

[80,90)

[90,100]

獎金

a

2a

3a

4a

查看答案和解析>>

同步練習冊答案