18.已知函數(shù)f(x)=x2-2x,設(shè)$g(x)=\frac{1}{x}•f({x+1})$.
(1)求函數(shù)g(x)的表達(dá)式,并求函數(shù)g(x)的定義域;
(2)判斷函數(shù)g(x)的奇偶性,并證明.

分析 (1)求出f(x+1)=x2-1,即可求函數(shù)g(x)的表達(dá)式,并求函數(shù)g(x)的定義域;
(2)由(1)知,g(x)的定義域為{x|x≠0}關(guān)于原點對稱,再利用奇函數(shù)的定義,判斷、證明函數(shù)g(x)的奇偶性.

解答 解:(1)由f(x)=x2-2x,得f(x+1)=x2-1,
所以,$g(x)=\frac{1}{x}•f({x+1})=\frac{{{x^2}-1}}{x}$,定義域為{x|x∈R,且x≠0};
(2)結(jié)論:函數(shù)g(x)為奇函數(shù).
證明:由(1)知,g(x)的定義域為{x|x≠0}關(guān)于原點對稱,
并且,$g({-x})=\frac{{{{({-x})}^2}-1}}{-x}=-g(x)$,
所以,函數(shù)g(x)為奇函數(shù).

點評 本題考查函數(shù)解析式的求解,考查函數(shù)奇偶性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個圓柱的正視圖是面積為6的矩形,它的側(cè)面積為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“n>m>0”是方程“mx2+ny2=1表示焦點在x軸上的橢圓”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=(mx+n)lnx.若曲線y=f(x)在點P(e,f(e))處的切線方程為y=2x-e(e為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a,b∈R+,試比較$\frac{f(a)+f(b)}{2}$與$f(\frac{a+b}{2})$的大小,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)和橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1有相同的焦點,且雙曲線的離心率是橢圓離心率的兩倍,則雙曲線的方程為$\frac{x^2}{4}-\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)a=0.70.4,b=0.40.7,c=0.40.4,則a,b,c的大小關(guān)系為( 。
A.b<a<cB.a<c<bC.b<c<aD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列函數(shù)與y=|x|為同一函數(shù)的是( 。
A.$y={(\sqrt{x})^2}$B.$y=\sqrt{x^2}$C.$y=\left\{\begin{array}{l}x,(x>0)\\-x,(x<0)\end{array}\right.$D.$y={log_b}{b^x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知拋物線x2=2py(p>0)的準(zhǔn)線經(jīng)過點(0,-2),則拋物線的焦點坐標(biāo)為(  )
A.(0,1)B.(0,2)C.(1,0)D.(2,0)
(第4題圖)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)$f(x)=ln(1+|x|)-\frac{1}{{1+{x^2}}}$則使f(2x)>f(x-1)成立的x范圍為( 。
A.$(-∞,-1)∪(\frac{1}{3},+∞)$B.$(-1,\frac{1}{3})$C.$(-∞,\frac{1}{3})∪(1,+∞)$D.$(\frac{1}{3},1)$

查看答案和解析>>

同步練習(xí)冊答案