分析 (1)求出f(x+1)=x2-1,即可求函數(shù)g(x)的表達(dá)式,并求函數(shù)g(x)的定義域;
(2)由(1)知,g(x)的定義域為{x|x≠0}關(guān)于原點對稱,再利用奇函數(shù)的定義,判斷、證明函數(shù)g(x)的奇偶性.
解答 解:(1)由f(x)=x2-2x,得f(x+1)=x2-1,
所以,$g(x)=\frac{1}{x}•f({x+1})=\frac{{{x^2}-1}}{x}$,定義域為{x|x∈R,且x≠0};
(2)結(jié)論:函數(shù)g(x)為奇函數(shù).
證明:由(1)知,g(x)的定義域為{x|x≠0}關(guān)于原點對稱,
并且,$g({-x})=\frac{{{{({-x})}^2}-1}}{-x}=-g(x)$,
所以,函數(shù)g(x)為奇函數(shù).
點評 本題考查函數(shù)解析式的求解,考查函數(shù)奇偶性,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b<a<c | B. | a<c<b | C. | b<c<a | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y={(\sqrt{x})^2}$ | B. | $y=\sqrt{x^2}$ | C. | $y=\left\{\begin{array}{l}x,(x>0)\\-x,(x<0)\end{array}\right.$ | D. | $y={log_b}{b^x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,2) | C. | (1,0) | D. | (2,0) (第4題圖) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-∞,-1)∪(\frac{1}{3},+∞)$ | B. | $(-1,\frac{1}{3})$ | C. | $(-∞,\frac{1}{3})∪(1,+∞)$ | D. | $(\frac{1}{3},1)$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com