【題目】已知橢圓的長軸長為,右頂點(diǎn)到左焦點(diǎn)的距離為,、分別為橢圓的左、右兩個焦點(diǎn).
(1)求橢圓的方程;
(2)已知橢圓的切線(與橢圓有唯一交點(diǎn))的方程為,切線與直線和直線分別交于點(diǎn)、,求證:為定值,并求此定值;
(3)設(shè)矩形的四條邊所在直線都和橢圓相切(即每條邊所在直線與橢圓有唯一交點(diǎn)),求矩形的面積的取值范圍.
【答案】(1);(2)證明見解析,;(3)
【解析】
(1)由長軸長可得,由右頂點(diǎn)到左焦點(diǎn)的距離為,進(jìn)而求解即可;
(2)聯(lián)立可得,由相切可得,則,分別求得,,將代入,進(jìn)而求解即可;
(3)分別討論與的情況,當(dāng)時,設(shè)直線為,則,聯(lián)立直線與橢圓方程,令可得,即可代回求得直線的方程,進(jìn)而求得直線與直線的距離,同理求得直線與直線的距離,從而利用均值不等式求解.
(1)由題,因?yàn)?/span>,,
所以,,則,
所以橢圓的標(biāo)準(zhǔn)方程為.
(2)證明:由(1),
聯(lián)立可得,
所以,即,
對于切線:,
當(dāng)時,;當(dāng)時,,
所以,
,
所以,為定值.
(3)由題,當(dāng)時,;
當(dāng)時,設(shè)邊所在直線為切線:,
所以,
聯(lián)立可得,
則,即,
所以直線的方程為;直線的方程為,
所以直線和直線的距離為,
同理,直線和直線的距離為,
所以,
因?yàn)?/span>,當(dāng)且僅當(dāng),即時等號成立,
所以,
綜上,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的標(biāo)準(zhǔn)方程是,設(shè)是橢圓的左焦點(diǎn),為直線上任意一點(diǎn),過做的垂線交橢圓于點(diǎn),.
(1)證明:線段平分線段(其中為坐標(biāo)原點(diǎn));
(2)當(dāng)最小時,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若,當(dāng)x∈[0,1]時,f(x)=x,若在區(qū)間(﹣1,1]內(nèi),有兩個零點(diǎn),則實(shí)數(shù)m的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)當(dāng)時,若不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)若存在,且當(dāng)時,,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中e為自然對數(shù)的底數(shù)).
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)當(dāng)時,若不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)到直線的距離為,過點(diǎn)的直線與交于、兩點(diǎn).
(1)求拋物線的準(zhǔn)線方程;
(2)設(shè)直線的斜率為,直線的斜率為,若,且與的交點(diǎn)在拋物線上,求直線的斜率和點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是各項(xiàng)均為正數(shù)的無窮數(shù)列,數(shù)列滿足(n),其中常數(shù)k為正整數(shù).
(1)設(shè)數(shù)列前n項(xiàng)的積,當(dāng)k=2時,求數(shù)列的通項(xiàng)公式;
(2)若是首項(xiàng)為1,公差d為整數(shù)的等差數(shù)列,且=4,求數(shù)列的前2020項(xiàng)的和;
(3)若是等比數(shù)列,且對任意的n,,其中k≥2,試問:是等比數(shù)列嗎?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下四個命題:
①設(shè)是空間中的三條直線,若,,則.
②在面積為的的邊上任取一點(diǎn),則的面積大于的概率為.
③已知一個回歸直線方程為,則.
④數(shù)列為等差數(shù)列的充要條件是其通項(xiàng)公式為的一次函數(shù).
其中正確命題的充號為________.(把所有正確命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品自生產(chǎn)并投入市場以來,生產(chǎn)企業(yè)為確保產(chǎn)品質(zhì)量,決定邀請第三方檢測機(jī)構(gòu)對產(chǎn)品進(jìn)行質(zhì)量檢測,并依據(jù)質(zhì)量指標(biāo)Z來衡量產(chǎn)品的質(zhì)量.當(dāng)時,產(chǎn)品為優(yōu)等品;當(dāng)時,產(chǎn)品為一等品;當(dāng)時,產(chǎn)品為二等品.第三方檢測機(jī)構(gòu)在該產(chǎn)品中隨機(jī)抽取500件,繪制了這500件產(chǎn)品的質(zhì)量指標(biāo)的條形圖.用隨機(jī)抽取的500件產(chǎn)品作為樣本,估計(jì)該企業(yè)生產(chǎn)該產(chǎn)品的質(zhì)量情況,并用頻率估計(jì)概率.
(1)從該企業(yè)生產(chǎn)的所有產(chǎn)品中隨機(jī)抽取4件,求至少有1件優(yōu)等品的概率;
(2)現(xiàn)某人決定購買80件該產(chǎn)品.已知每件成本1000元,購買前,邀請第三方檢測機(jī)構(gòu)對要購買的80件產(chǎn)品進(jìn)行抽樣檢測,買家、企業(yè)及第三方檢測機(jī)構(gòu)就檢測方案達(dá)成以下協(xié)議:從80件產(chǎn)品中隨機(jī)抽出4件產(chǎn)品進(jìn)行檢測,若檢測出3件或4件為優(yōu)等品,則按每件1600元購買,否則按每件1500元購買,每件產(chǎn)品的檢測費(fèi)用250元由企業(yè)承擔(dān).記企業(yè)的收益為X元,求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com