已知以角為鈍角的的三角形內(nèi)角的對邊分別為、、,,且與垂直.
(1)求角的大;
(2)求的取值范圍
(1);(2).
解析試題分析:(1)觀察要求的結(jié)論,易知要列出的邊角之間的關(guān)系,題中只有與垂直提供的等量關(guān)系是,即,這正是我們需要的邊角關(guān)系.因為要求角,故把等式中的邊化為角,我們用正弦定理,,,代入上述等式得
,得出,從而可求出角;(2)要求的范圍,式子中有兩個角不太好計算,可以先把兩個角化為一個角,由(1),從而,再所其化為一個三角函數(shù)(這是解三角函數(shù)問題常用方法),下面只要注意這個范圍即可.
試題解析:1)∵垂直,∴(2分)
由正弦定理得(4分)
∵,∴,(6分) 又∵∠B是鈍角,∴∠B (7分)
(2) (3分)
由(1)知A∈(0,),, (4分)
,(6分) ∴的取值范圍是 (7分)
考點:(1)向量的垂直,正弦定理;(2)三角函數(shù)的值域.
科目:高中數(shù)學 來源: 題型:解答題
某個公園有個池塘,其形狀為直角△ABC,∠C=90°,AB=2百米,BC=1百米.
(1)現(xiàn)在準備養(yǎng)一批供游客觀賞的魚,分別在AB、BC、CA上取點D,E,F(xiàn),如圖(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面積S△DEF的最大值;
(2)現(xiàn)在準備新建造一個荷塘,分別在AB,BC,CA上取點D,E,F(xiàn),如圖(2),建造△DEF
連廊(不考慮寬度)供游客休憩,且使△DEF為正三角形,求△DEF邊長的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知,且,
設,的圖象相鄰兩對稱軸之間的距離等于.
(1)求函數(shù)的解析式;
(2)在△ABC中,分別為角的對邊,,,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在直角坐標系xOy中,銳角△ABC內(nèi)接于圓已知BC平行于x軸,AB所在直線方程為,記角A,B,C所對的邊分別是a,b,c.
(1)若的值;
(2)若的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com