已知過球面上三點的截面和球心的距離為球半徑的一半,且,求球的表面積.

 解:設(shè)截面圓心為,連結(jié),設(shè)球半徑為,則,

中,,∴,∴,

.    

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正四棱柱ABCD-A1B1C1D1的底面邊長AB=6,側(cè)棱長AA1=2
7
,它的外接球的球心為O,
點E是AB的中點,點P是球O的球面上任意一點,有以下判斷:
(1)PE長的最大值是9;
(2)P到平面EBC的距離最大值是4+
7
;
(3)存在過點E的平面截球O的截面面積是3π;
(4)三棱錐P-AEC1體積的最大值是20.
其中正確判斷的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四棱柱ABCD-A1B1C1D1的底面邊長AB=6,側(cè)棱長AA1=2
7
,它的外接球的球心為O,點E是AB的中點,點P是球O的球面上任意一點,有以下判斷,
(1)PE長的最大值是9;(2)三棱錐P-EBC的最大值是
32
3
;(3)存在過點E的平面,截球O的截面面積是3π;(4)三棱錐P-AEC1體積的最大值是20.
正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川宜賓市高三第一次診斷性考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知正四棱柱ABCD—A1B1C1D1的底面邊長AB=6,側(cè)棱長,它的外接球的球心為O,點E是AB的中點,點P是球O的球面上任意一點,則有以下結(jié)論:

①PE長的最大值是9;

②三棱錐P—EBC的最大值是[]

③存在過點E的平面,截球O的截面面積是;

④三棱錐P—AEC1體積的最大值是20。

其中正確結(jié)論的是           。(寫出所有正確結(jié)論的序號)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江西省南昌市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:填空題

已知正四棱柱ABCD-A1B1C1D1的底面邊長AB=6,側(cè)棱長,它的外接球的球心為O,點E是AB的中點,點P是球O的球面上任意一點,有以下判斷,
(1)PE長的最大值是9;(2)三棱錐P-EBC的最大值是;(3)存在過點E的平面,截球O的截面面積是3π;(4)三棱錐P-AEC1體積的最大值是20.
正確的是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省宜賓市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知正四棱柱ABCD-A1B1C1D1的底面邊長AB=6,側(cè)棱長,它的外接球的球心為O,點E是AB的中點,點P是球O的球面上任意一點,有以下判斷,
(1)PE長的最大值是9;(2)三棱錐P-EBC的最大值是;(3)存在過點E的平面,截球O的截面面積是3π;(4)三棱錐P-AEC1體積的最大值是20.
正確的是   

查看答案和解析>>

同步練習(xí)冊答案