比較x2與x-1的大。
考點:不等式比較大小
專題:不等式的解法及應(yīng)用
分析:利用作差法即可得到結(jié)論.
解答: 解:∵x2-(x-1)=x2-x+1=(x-
1
2
2+
3
4
>0,
∴x2>x-1.
點評:本題主要考查利用不等式的性質(zhì)比較大小,通過作差法是解決本題的關(guān)鍵,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列各式中,函數(shù)的個數(shù)是(  )
①y=1;②y=x2;③y=1-x;④y=
x-2
+
1-x
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),過焦點垂直于長軸的弦長為
2
,焦點與短軸兩端點構(gòu)成等腰直角三角形.
(Ⅰ)求橢圓C的標準方程.
(Ⅱ)過點P(-2,0)作直線l與橢圓C交于A、B兩點,求△AF1B的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

討論直線l1:ax+8y-a-4=0與直線l2:x+2ay-2a+1=0的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
lnx
x
,x>6
e-x(x3+3x2+ax+b),x≤6
,其中a,b∈R,e為自然對數(shù)的底數(shù).
(Ⅰ)當a=b=-3時,函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當x≤6時,若函數(shù)h(x)=f(x)-e-x(x3+b-1)存在兩個相距大于2的極值點,求實數(shù)a的取值范圍;
(Ⅲ)若函數(shù)g(x)與函數(shù)f(x)的圖象關(guān)于y軸對稱,且函數(shù)g(x)在點(-6,m),(2,n)單調(diào)遞減,在(m,2),(n,+∞)單調(diào)遞增,試證明:f(n-m)
5
6
36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
2x
1+x2
(x∈R),討論函數(shù)f(x)的單調(diào)性并作出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sin
x
2
cos
x
2
+cos2
x
2
+m的圖象過點(
6
,0).
(Ⅰ)求實數(shù)m值以及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)y=f(x)的圖象與x軸、y軸及直線x=t(0<t<
3
)所圍成的曲邊四邊形面積為S,求S關(guān)于t的函數(shù)S(t)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在邊長為3的正方形ABCD中,有一束光線從P點射出,到Q點反射,AP=1,BQ=1,之后會不斷地被正方形的各邊反射,當光線又回到點P時,
(1)光線被正方形各邊一共反射了
 
次;
(2)光線所走的總路程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在等差數(shù)列{an}中,若m+2n+p=s+2t+r,m,n,p,s,t,r∈N*,則am+2an+ap=as+2at+ar,仿此類比,可得到等比數(shù)列{bn}中的一個正確命題:若m+2n+p=s+2t+r,m,n,p,s,t,r∈N*,則
 

查看答案和解析>>

同步練習冊答案