19.通過隨機詢問110名不同的大學生是否愛好某項運動,得到如表的列聯(lián)表:
總計
愛好402060
不愛好203050
總計6050110
附:Kκ=2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
則有( 。┌盐照f明大學生“愛好該項運動是否與性別有關”.
A.95%B.97.5%C.99%D.99.9%

分析 代入公式計算k的值,和臨界值表比對后即可得到答案.

解答 解:由k2=$\frac{110×(40×30-20×30)^{2}}{60×50×60×50}$≈7.8>6.635,
所以有99%以上的把握認為“愛好該項運動與性別有關”.

點評 本題考查獨立性檢驗的應用,解題的關鍵是利用列聯(lián)表正確的計算出觀測值,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.在△ABC中,B=60°,且c=8,b-a=4,則b=7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知命題p:?x∈R,3x<4x,命題q:?x∈R,x3=1-x2,則下列命題中為真命題的是(  )
A.p∧¬qB.¬p∧qC.¬p∧¬qD.p∧q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.函數(shù)y=$\sqrt{3-2x-{x^2}}$的定義域是( 。
A.[-3,1]B.[-1,3]C.[1,3]D.(-3,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=x2+2ax,x∈[-5,5].
(1)若y=f(x)-2x是偶函數(shù),求f(x)的最大值和最小值;
(2)如果f(x)在[-5,5]上是單調(diào)函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.直線x+$\sqrt{3}$y+1=0的斜率、橫截距分別是( 。
A.$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{3}}{3}$,-1C.-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{3}$,1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.如圖為一個求20個數(shù)的平均數(shù)的算法語句,在橫線上應填充的語句為S=S+x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知數(shù)列{an}滿足a1=1,a2=2,an+2=(1+cos2$\frac{nπ}{2}$)an+sin2$\frac{nπ}{2}$,則該數(shù)列的前10項和為(  )
A.89B.76C.77D.35

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f($\frac{4}{x+1}$)=2x2-3x,則f(2)等于(  )
A.0B.$-\frac{4}{3}$C.-1D.2

查看答案和解析>>

同步練習冊答案