【題目】如圖,四棱錐PABCD中,側(cè)面PAD是正三角形,底面ABCD是菱形,且∠ABC=60°,M為PC的中點(diǎn).

(1)求證:PC⊥AD.

(2)在棱PB上是否存在一點(diǎn)Q,使得A,Q,M,D四點(diǎn)共面?若存在,指出點(diǎn)Q的位置并證明;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析

【解析】

1)取AD的中點(diǎn)O,連接OP,OC,AC,由線(xiàn)面垂直判定定理證明AD⊥平面POC,繼而得到PC⊥AD

2)取棱PB的中點(diǎn)Q,連接QM,證明QM∥AD,從而A,Q,M,D四點(diǎn)共面

(1)證明:如圖,取AD的中點(diǎn)O,連接OP,OC,AC.

依題意可知△PAD,△ACD均為正三角形.

所以O(shè)C⊥AD,OP⊥AD.

又OC∩OP=O,OC平面POC,OP平面POC,所以AD⊥平面POC.

又PC平面POC,所以PC⊥AD.

(2)解:當(dāng)點(diǎn)Q為棱PB的中點(diǎn)時(shí),A,Q,M,D四點(diǎn)共面.

證明如下:

取棱PB的中點(diǎn)Q,連接QM.

因?yàn)镸為PC的中點(diǎn),所以QM∥BC.

在菱形ABCD中,AD∥BC,所以QM∥AD.

所以A,Q,M,D四點(diǎn)共面.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 設(shè)命題p:函數(shù)y在定義域上為減函數(shù);命題qab(0,+∞),當(dāng)ab=1時(shí),=3.以下說(shuō)法正確的是(  )

A. pq為真B. pq為真

C. pqD. p,q均假

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是奇函數(shù),,當(dāng)時(shí),,則不等式的解集為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)的定義域?yàn)?/span>, , 當(dāng)時(shí),, 則函數(shù)在區(qū)間上的所有零點(diǎn)的和為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正方體ABCDA1B1C1D1中,M,N分別是棱AB,CC1的中點(diǎn),△MB1P的頂點(diǎn)P在棱CC1與棱C1D1上運(yùn)動(dòng),有以下四個(gè)命題:

①平面MB1P⊥ND1;

②平面MB1P⊥平面ND1A1;

③△MB1P在底面ABCD上的射影圖形的面積為定值;

④△MB1P在側(cè)面DD1C1C上的射影圖形是三角形.

其中正確的命題序號(hào)是(  )

A. B. ②③

C. ①③D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知AB為圓O的直徑,且AB=4,點(diǎn)D為線(xiàn)段AB上一點(diǎn),且,點(diǎn)C為圓O上一點(diǎn),且.點(diǎn)P在圓O所在平面上的正投影為點(diǎn)D,PD=DB.

(1)求證:CD⊥平面PAB;

(2)求直線(xiàn)PC與平面PAB所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿(mǎn)分12已知函數(shù)

1若直線(xiàn)過(guò)點(diǎn),并且與曲線(xiàn)相切,求直線(xiàn)的方程;

2設(shè)函數(shù)上有且只有一個(gè)零點(diǎn),求的取值范圍。其中為自然對(duì)數(shù)的底數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的方程為,直線(xiàn)過(guò)定點(diǎn)P(2,0),斜率為。當(dāng)為何值時(shí),直線(xiàn)與拋物線(xiàn):

(1)只有一個(gè)公共點(diǎn);

(2)有兩個(gè)公共點(diǎn);

(3)沒(méi)有公共點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角三角形ABC中,若,且滿(mǎn)足關(guān)系式,則a+c的取值范圍是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案