【題目】如圖所示,已知AB為圓O的直徑,且AB=4,點D為線段AB上一點,且,點C為圓O上一點,且.點P在圓O所在平面上的正投影為點D,PD=DB.

(1)求證:CD⊥平面PAB;

(2)求直線PC與平面PAB所成的角.

【答案】(1)見解析;(2)

【解析】

1)連接CO,由題意可得△ACO為等邊三角形,即得CD⊥AO,再由題意得PD⊥CD,即證得CD⊥平面PAB

2)由(1)知∠CPD是直線PC與平面PAB所成的角,在三角形中結(jié)合各邊長解三角形即可求出結(jié)果

(1)證明:連接CO,

由3AD=DB知,點D為AO的中點.

又因為AB為圓O的直徑,所以AC⊥CB.

AC=BC知,∠CAB=60°,

所以△ACO為等邊三角形.故CD⊥AO.

因為點P在圓O所在平面上的正投影為點D,

所以PD⊥平面ABC,又CD平面ABC,所以PD⊥CD,

由PD平面PAB,AO平面PAB,且PD∩AO=D,

得CD⊥平面PAB.

(2)由(1)知∠CPD是直線PC與平面PAB所成的角,

又△AOC是邊長為2的正三角形,所以CD=.

在Rt△PCD中,PD=DB=3,CD=,

所以,∠CPD=30°,

即直線PC與平面PAB所成的角為30°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(I)若函數(shù)的圖象在處的切線斜率為1,求實數(shù)的值;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)若函數(shù)在[1,2]上是減函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正四棱柱中,,中點,中點.

(1)證明:平面

(2)若直線與平面所成的角為,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線:的焦點為,準(zhǔn)線為,軸的交點為,點在拋物線上,過點于點,如圖1.已知,且四邊形的面積為.

(1)求拋物線的方程;

(2)若正方形的三個頂點,都在拋物線上(如圖2),求正方形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABCD中,側(cè)面PAD是正三角形,底面ABCD是菱形,且∠ABC=60°,M為PC的中點.

(1)求證:PC⊥AD.

(2)在棱PB上是否存在一點Q,使得A,Q,M,D四點共面?若存在,指出點Q的位置并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)對于任意的,都有,當(dāng)時,,且

1)求,的值;

2)當(dāng)時,求函數(shù)的最大值和最小值;

3)設(shè)函數(shù),判斷函數(shù)g(x) 最多有幾個零點,并求出此時實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,底面ABCD是菱形,點O是對角線ACBD的交點,MPD的中點.

1)求證:OM∥平面PAB

2)求證:平面PBD⊥平面PAC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南北朝數(shù)學(xué)家何承天發(fā)明的調(diào)日法是程序化尋求精確分?jǐn)?shù)來表示數(shù)值的算法,其理論依據(jù)是:設(shè)實數(shù)的不足近似值和過剩近似值分別為,則的更為精確的近似值.

我們知道,我國早在《周髀算經(jīng)》中就有周三徑一的古率記載,《隋書律歷志》有如下記載:南徐州從事史祖沖之更開密法,以圓徑一億為丈,圓周盈數(shù)三丈一尺四寸一分五厘九毫二秒七忽,肭數(shù)三丈一尺四寸一分五厘九毫二秒六忽,正數(shù)在盈肭二限之間。密率:圓徑一百一十三,圓周三百五十五。約率,圓徑七,周二十二,這一記錄指出了祖沖之關(guān)于圓周率的兩大貢獻:其一是求得圓周率;其二是得到的兩個近似分?jǐn)?shù)即:約率為22/7,密率為355/113,他算出的8位可靠數(shù)字,不但在當(dāng)時是最精密的圓周率,而且保持世界紀(jì)錄一千多年,他對的研究真可謂運籌于帷幄之中,決勝于千年之外,祖沖之是我國古代最有影響的數(shù)學(xué)家之一,莫斯科大學(xué)走廊里有其塑像,195910月,原蘇聯(lián)通過月球3”號衛(wèi)星首次拍下月球背面照片后,就以祖沖之命名一個環(huán)形山,其月面坐標(biāo)是:東經(jīng)148度,北緯17.

縱橫古今,關(guān)于值的研究,經(jīng)歷了古代試驗法時期、幾何法時期、分析法時期、蒲豐或然性試驗方法時期、計算機時期,己知,試以上述的不足近似值和過剩近似值為依據(jù),那么使用兩次調(diào)日法后可得的近似分?jǐn)?shù)為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)

煉鋼是一個氧化降碳的過程,由于鋼水含碳量的多少直接影響冶煉時間的長短,因此必須掌握鋼水含碳量和冶煉時間的關(guān)系.現(xiàn)已測得爐料熔化完畢時鋼水的含碳量x與冶煉時間y(從爐料熔化完畢到出鋼的時間)的一組數(shù)據(jù),如下表所示:

(1)據(jù)統(tǒng)計表明,之間具有線性相關(guān)關(guān)系,請用相關(guān)系數(shù)r加以說明( ,則認(rèn)為yx有較強的線性相關(guān)關(guān)系,否則認(rèn)為沒有較強的線性相關(guān)關(guān)系,r精確到0.001);

(2)建立y關(guān)于x的回歸方程(回歸系數(shù)的結(jié)果精確到0.01);

(3)根據(jù)(2)中的結(jié)論,預(yù)測鋼水含碳量為1600.01%的冶煉時間.

參考公式:回歸方程中斜率和截距的最小二乘估計分別為,

,相關(guān)系數(shù)

參考數(shù)據(jù):,

.

查看答案和解析>>

同步練習(xí)冊答案