3.直線l過(guò)點(diǎn)A(1,1),且l在y軸上的截距的取值范圍為(0,2),則直線l的斜率的取值范圍為(-1,1).

分析 設(shè)直線l的方程為:y-1=k(x-1),化為:y=kx+1-k,由題意可得:0<1-k<2.

解答 解:設(shè)直線l的方程為:y-1=k(x-1),化為:y=kx+1-k,
由題意可得:0<1-k<2,
解得-1<k<1.
∴直線l的斜率的取值范圍為(-1,1).
故答案為:(-1,1).

點(diǎn)評(píng) 本題考查了直線的點(diǎn)斜式、截距的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{(\frac{1}{3})^{x}-2,x≤0}\end{array}\right.$,則不等式f(x)≥1的解集為( 。
A.{x|x≤-1}B.{x|x≥3}C.{x|x≤-1或x≥3}D.{x|x≤0或x≥3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖,正三棱柱(底面為正三角形,側(cè)棱垂直底面)的正視圖面積a2,則側(cè)視圖的面積為(  )
A.a2B.$\frac{{\sqrt{3}}}{2}{a^2}$C.$\sqrt{3}{a^2}$D.$\frac{{\sqrt{3}}}{4}{a^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.袋中裝著標(biāo)有數(shù)字1,2,3,4,5的五副羽毛球拍,現(xiàn)從袋中任取4支球拍,每支球拍被取出的可能性都相等
(1)求取出的4支球拍上的數(shù)字互不相同的概率
(2)用ξ表示取出的4支球拍上的最大數(shù)字,求隨機(jī)變量ξ的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若直線l經(jīng)過(guò)A(2,1),B(1,-m2)(m∈R)兩點(diǎn),則直線l的傾斜角α的取值范圍是( 。
A.0≤α≤$\frac{π}{4}$B.$\frac{π}{2}$<α<πC.$\frac{π}{4}$≤α<$\frac{π}{2}$D.$\frac{π}{2}$<α≤$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知平面向量$\overrightarrow a$,$\overrightarrow b$,$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=\sqrt{2}$,$\overrightarrow a•\overrightarrow b=1$,則向量$\overrightarrow a$,$\overrightarrow b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.某市教育局隨機(jī)調(diào)查了300名高中學(xué)生周末的學(xué)習(xí)時(shí)間(單位:小時(shí)),制成了如圖所示的頻率分布直方圖,其中學(xué)習(xí)時(shí)間的范圍是[0,30],樣本數(shù)據(jù)分組為,[0,5),[5,10),[10,15),[15,20),[20,25),[25,30],根據(jù)直方圖,這300名高中生周末的學(xué)習(xí)時(shí)間是[5,15)小時(shí)的人數(shù)是( 。
A.15B.27C.135D.165

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知一家電子公司生產(chǎn)某種電子產(chǎn)品的月固定成本為20萬(wàn)元,每生產(chǎn)1千件需另投入5.4萬(wàn)元,設(shè)該公司一月內(nèi)生產(chǎn)該電子產(chǎn)品x千件能全部銷售完,每千件的銷售收入為g(x)萬(wàn)元,且g(x)=$\left\{\begin{array}{l}{13.5-\frac{1}{30}{x}^{2}(0<x≤10)}\\{\frac{168}{x}-\frac{2000}{3{x}^{2}}(x>10)}\end{array}\right.$
(Ⅰ)寫出月利潤(rùn)y(萬(wàn)元)關(guān)于月產(chǎn)量x(千件)的函數(shù)解析式;
(Ⅱ)月產(chǎn)量為多少千件時(shí),該公司在這一產(chǎn)品的生產(chǎn)中所獲利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.直角△ABC的三個(gè)頂點(diǎn)在半徑為R的球面上,兩直角邊的長(zhǎng)分別為6和8,球心到平面ABC的距離是12,則R=(  )
A.26B.20C.13D.10

查看答案和解析>>

同步練習(xí)冊(cè)答案