【題目】楊輝三角,又稱帕斯卡三角,是二項(xiàng)式系數(shù)在三角形中的一種幾何排列.在我國南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》(1261年)一書中用如圖所示的三角形解釋二項(xiàng)式乘方展開式的系數(shù)規(guī)律.現(xiàn)把楊輝三角中的數(shù)從上到下,從左到右依次排列,得數(shù)列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1…….記作數(shù)列,若數(shù)列的前項(xiàng)和為,則 ( )

A. B. C. D.

【答案】B

【解析】

數(shù)列{an}中前78項(xiàng)在楊輝三角的從第一排到第12排,每排的和為二項(xiàng)式系數(shù)和, {an}中最后兩項(xiàng)是第13排的112.全部相加可得結(jié)果.

楊輝三角中前12行共有1+2+3+4++1278個(gè)數(shù),其和為:20+21+22++21121214095

13行共有2個(gè)位數(shù),它們是1,12,其和為13,

4095+134108,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)的傾斜角為繞其上一點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)角得到直線軸上的截距為沿逆時(shí)針方向再旋轉(zhuǎn)角得到直線,則的方程為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在萬眾創(chuàng)新的大經(jīng)濟(jì)背景下,某成都青年面包店推出一款新面包,每個(gè)面包的成本價(jià)為元,售價(jià)為元,該款面包當(dāng)天只出一爐(一爐至少個(gè),至多個(gè)),當(dāng)天如果沒有售完,剩余的面包以每個(gè)元的價(jià)格處理掉,為了確定這一爐面包的個(gè)數(shù),該店記錄了這款新面包最近天的日需求量(單位:個(gè)),整理得下表:

日需求量

頻數(shù)

(1)根據(jù)表中數(shù)據(jù)可知,頻數(shù)與日需求量(單位:個(gè))線性相關(guān),求關(guān)于的線性回歸方程;

(2)以天記錄的各日需求量的頻率代替各日需求量的概率,若該店這款新面包出爐的個(gè)數(shù)為,記當(dāng)日這款新面包獲得的總利潤為(單位:元).求的分布列及其數(shù)學(xué)期望.

相關(guān)公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別是雙曲線E 的左、右焦點(diǎn),P是雙曲線上一點(diǎn), 到左頂點(diǎn)的距離等于它到漸近線距離的2倍,(1)求雙曲線的漸近線方程;(2)當(dāng)時(shí), 的面積為,求此雙曲線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Cx2+y2-2x-4y=0

1)求圓C關(guān)于直線x-y-1=0對稱的圓D的標(biāo)準(zhǔn)方程;

2)過點(diǎn)P4,-4)的直線l被圓C截得的弦長為8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 已知函數(shù).

(1)求函數(shù)在點(diǎn)處的切線方程;

(2)已知函數(shù)區(qū)間上的最小值為1,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題:①直線的斜率,則直線的傾斜角;②直線與以、兩點(diǎn)為端點(diǎn)的線段相交,則;③如果實(shí)數(shù)滿足方程,那么的最大值為;④直線與橢圓恒有公共點(diǎn),則的取值范圍是.其中正確命題的序號是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠銷售部以箱為單位銷售某種零件,每箱的定價(jià)為200元,低于100箱按原價(jià)銷售;不低于100箱通過雙方議價(jià),買方能以優(yōu)惠成交的概率為0.6,以優(yōu)惠成交的概率為0.4.

(1)甲、乙兩單位都要在該廠購買150箱這種零件,兩單位各自達(dá)成的成交價(jià)相互獨(dú)立,求甲單位優(yōu)惠比例不低于乙單位優(yōu)惠比例的概率;

(2)某單位需要這種零件650箱,求購買總價(jià)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,其中一個(gè)焦點(diǎn)F在直線.

1)求橢圓C的方程;

2)若直線和直線與橢圓分別相交于點(diǎn)、、、,求的值;

3)若直線與橢圓交于P,Q兩點(diǎn),試求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案