如圖所示,AC為的直徑,D為的中點,E為BC的中點.
(Ⅰ)求證:AB∥DE;
(Ⅱ)求證:2AD·CD=AC·BC.
(Ⅰ)詳見解析;(Ⅱ)詳見解析.
解析試題分析:(Ⅰ)通過連接BD,通過證明與同一條直線垂直的兩條直線垂直的思路進行證明線線平行;(Ⅱ)通過證明△DAC∽△ECD,
試題解析:(Ⅰ)連接BD,因為D為的中點,所以BD=DC.因為E為BC的中點,所以DE⊥BC.
因為AC為圓的直徑,所以∠ABC=90°,所以AB∥DE. 5分
(Ⅱ)因為D為的中點,所以∠BAD=∠DAC,
又∠BAD=∠DCB,則∠DAC=∠DCB.
又因為AD⊥DC,DE⊥CE,所以△DAC∽△ECD.
所以=,AD·CD=AC·CE,2AD·CD=AC·2CE,
因此2AD·CD=AC·BC. 10分
考點:1.線線平行的證明;2.三角形相似的證明.
科目:高中數(shù)學 來源: 題型:解答題
已知中,,,為的中點,分別在線段上,且交于,把沿折起,如下圖所示,
(1)求證:平面;
(2)當二面角為直二面角時,是否存在點,使得直線與平面所成的角為,若存在求的長,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖(1),等腰直角三角形的底邊,點在線段上,于,現(xiàn)將沿折起到的位置(如圖(2)).
(Ⅰ)求證:;
(Ⅱ)若,直線與平面所成的角為,求長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,已知為圓的直徑,點為線段上一點,且,點為圓上一點,且.點在圓所在平面上的正投影為點,.
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在直三棱柱(即側(cè)棱與底面垂直的三棱柱)中,
(I)若為的中點,求證:平面平面;
(II)若為線段上一點,且二面角的大小為,試確定的位置.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖已知:菱形所在平面與直角梯形所在平面互相垂直,,點分別是線段的中點.
(1)求證:平面平面;
(2)點在直線上,且//平面,求平面與平面所成角的余弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com