【題目】已知橢圓經(jīng)過點,離心率為, 為坐標(biāo)原點.
(I)求橢圓的方程.
(II)若點為橢圓上一動點,點與點的垂直平分線l交軸于點,求的最小值.
【答案】(Ⅰ);(Ⅱ) .
【解析】試題分析:(I)由離心率得到,再由橢圓過點E可求得, ,故可得橢圓的方程;(II)設(shè)點,結(jié)合條件可得AP的垂直平分線的方程為: ,令,得,再由點P在橢圓上可得得,化簡點,求出|OB|后用基本不等式求解即可。
試題解析:(Ⅰ)因為橢圓的離心率為,
所以,故,
所以橢圓的方程為為,
又點在橢圓上,
所以,
解得,
所以橢圓的方程為.
(Ⅱ)由題意直線的斜率存在,設(shè)點,
則線段的中點的坐標(biāo)為,且直線的斜率,
因為直線,
故直線的斜率為,且過點,
所以直線的方程為: ,
令,得,
則,
由,得,
化簡得.
所以.
當(dāng)且僅當(dāng),即時等號成立.
所以的最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,PA⊥底面ABCD,M是棱PD的中點,且PA=AB=AC=2,BC=2 .
(1)求證:CD⊥平面PAC;
(2)如果如果N是棱AB上一點,且直線CN與平面MAB所成角的正弦值為 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4cosxsin(x+ )﹣1, (Ⅰ)求f(x)的單調(diào)遞增區(qū)間
(Ⅱ)若sin2x+af(x+ )+1>6cos4x對任意x∈(﹣ , )恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( )
A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】同時滿足兩個條件:(1)定義域內(nèi)是減函數(shù);(2)定義域內(nèi)是奇函數(shù)的函數(shù)是( )
A.f(x)=﹣x|x|
B.
C.f(x)=tanx
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知P是邊長為2的正三角形ABC邊BC上的動點,則 的值( )
A.是定值6
B.最大值為8
C.最小值為2
D.與P點位置有關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=f(x)的定義域為(﹣a,0)∪(0,a)(0<a<1),其圖象上任意一點P(x,y)滿足x2+y2=1,則給出以下四個命題:①函數(shù)y=f(x)一定是偶函數(shù);②函數(shù)y=f(x)可能是奇函數(shù);③函數(shù)y=f(x)在(0,a)上單調(diào)遞增④若函數(shù)y=f(x)是偶函數(shù),則其值域為(a2 , 1)其中正確的命題個數(shù)為( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線E上任意一點P到兩個定點 和 的距離之和為4,
(1)求動點P的方程;
(2)設(shè)過(0,﹣2)的直線l與曲線E交于C、D兩點,且 (O為坐標(biāo)原點),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|0≤x≤6},B={y|0≤y≤2},從A到B的對應(yīng)法則f不是映射的是( )
A.f:x
B.f:x
C.f:x
D.f:x
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com