分析 (1)由an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$,取到數(shù),整理得$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=$\frac{1}{2}$,數(shù)列{$\frac{1}{{a}_{n}}$}是以$\frac{1}{{a}_{1}}$=1為首項,以$\frac{1}{2}$為公差的等差數(shù)列,利用等差數(shù)列通項公式即可求得數(shù)列{an}的通項公式;
(2)由(1)可知:bn=anan+1=4($\frac{1}{n+1}$-$\frac{1}{n+2}$),累加即可求得數(shù)列{bn}的前n項和Tn.
解答 解:(1)an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$,則$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}}$+$\frac{1}{2}$,即$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=$\frac{1}{2}$,
∴數(shù)列{$\frac{1}{{a}_{n}}$}是以$\frac{1}{{a}_{1}}$=1為首項,以$\frac{1}{2}$為公差的等差數(shù)列,
∴$\frac{1}{{a}_{n}}$=1+(n-1)×$\frac{1}{2}$,則an=$\frac{2}{n+1}$,
∴數(shù)列{an}的通項公式an=$\frac{2}{n+1}$;
(2)由bn=anan+1=$\frac{2}{n+1}$×$\frac{2}{n+2}$=4($\frac{1}{n+1}$-$\frac{1}{n+2}$),
則數(shù)列{bn}的前n項和Tn,Tn=b1+b2+…+bn,
=4[($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n+1}$-$\frac{1}{n+2}$)],
=4($\frac{1}{2}$-$\frac{1}{n+2}$),
=$\frac{2n}{n+2}$,
數(shù)列{bn}的前n項和Tn=$\frac{2n}{n+2}$.
點評 本題考查等差數(shù)列的通項公式,考查“裂項法”求數(shù)列的前n項和,考查計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{28}$ | B. | $\frac{3}{8}$ | C. | $\frac{3}{7}$ | D. | $\frac{2}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一次購物量 | 1至4件 | 5至8件 | 9至12件 | 13至16件 | 17件及以上 |
顧客數(shù)(人) | x | 30 | 25 | y | 10 |
結(jié)算時間(分鐘/人) | 1 | 1.5 | 2 | 2.5 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com