17.已知函數(shù)f(x)是定義在R上的奇函數(shù),且f(x+2)=f(x),當(dāng)0<x<1時,f(x)=4x則f(-$\frac{5}{2}$)+f(2)=-2.

分析 根據(jù)函數(shù)奇偶性和周期性的性質(zhì),將函數(shù)進(jìn)行轉(zhuǎn)化進(jìn)行求解即可.

解答 解:∵f(x+2)=f(x),
∴函數(shù)的周期是2,
∵f(x)是定義在R上的奇函數(shù),
∴f(0)=0,
則f(2)=f(0)=0,
f(-$\frac{5}{2}$)=f(-$\frac{5}{2}$+2)=f(-$\frac{1}{2}$)=-f($\frac{1}{2}$)=-${4}^{\frac{1}{2}}$=-2,
則f(-$\frac{5}{2}$)+f(2)=-2+0=-2,
故答案為:-2

點評 本題主要考查函數(shù)值的計算,根據(jù)函數(shù)奇偶性和周期性的性質(zhì)將條件進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一個幾何體的三視圖如右圖所示,則該幾何體的體積為(  )
A.$\frac{5}{3}$B.$\frac{{10\sqrt{3}}}{3}$C.$\frac{10}{3}$D.$\frac{{5\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知f(n)=$\left\{\begin{array}{l}{{n}^{2},n為正奇數(shù)}\\{-{n}^{2},n為正偶數(shù)}\end{array}\right.$ 且an=f(n)+f(n+1),則a1+a2+a3+…+a2017的值為(  )
A.0B.2019C.-2019D.2018×2019

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知定義在R上的奇函數(shù)f(x),當(dāng)x>0時,f(x)=log2(x+1),則使得f(2x)<f(x-1)成立的x的取值范圍為{x|x<-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足a1=1,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=anan+1,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知正方形ABCD和矩形ACEF所在平面相互垂直,AB=$\sqrt{2}$,AF=1,G為線段AD上的任意一點.
(1)若M是線段EF的中點,證明:平面AMG⊥平面BDF;
(2)若N為線段EF上任意一點,設(shè)直線AN與平面ABF,平面BDF所成角分別是α,β,求$\frac{sinα}{sinβ}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列a1,a2-a1,a3-a2,…,an-an-1,…是首項為1,公差為1的等差數(shù)列,則數(shù)列{an}的通項公式an=$\frac{1}{2}$n(n+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=|$\overrightarrow{MP}$-x$\overrightarrow{MN}$|(x∈R),其中MN是半徑為4的圓O的一條弦,O為原點,P為單位圓上的點,設(shè)函數(shù)f(x)的最小值為t,當(dāng)點P在單位圓上運動時,t的最大值為3,則線段MN的長度為4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知等差數(shù)列{an}的公差為d,前n項和為Sn,則“d>0”是“S4+S6>2S5”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案