設函數(shù)
(1)若,求的單調區(qū)間,
(2)當時,,求的取值范圍.
(1)在上單調遞減,在,上單調遞增;(2).
解析試題分析:本題主要考查導數(shù)的運算,利用導數(shù)研究函數(shù)的單調性、不等式基礎知識,考查函數(shù)思想、分類討論思想,考查綜合分析和解決問題的能力.第一問,求導,用導數(shù)的正負來判斷函數(shù)的單調性;第二問,分類討論,先討論的情況,再研究的情況,通過求函數(shù)最值求的取值范圍.
試題解析:(1)∵,∴,
∴,所以當時,;當或時,,
∴在上單調遞減,在,上單調遞增. 6分
(2)由,得,即要滿足,
當時,顯然成立;當時,,記,,
所以易知的最小值為,所以,得. 12分
考點:1.用導數(shù)判斷函數(shù)的單調性;2.用導數(shù)求最值.
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分共12分)已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d),若曲線y=f(x)和曲線y=g(x)都過點P(0,2),且在點P處有相同的切線y=4x+2
(Ⅰ)求a,b,c,d的值
(Ⅱ)若x≥-2時,f(x)≤kg(x),求k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;
(Ⅱ)如果當時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),為函數(shù)的導函數(shù).
(1)設函數(shù)f(x)的圖象與x軸交點為A,曲線y=f(x)在A點處的切線方程是,求的值;
(2)若函數(shù),求函數(shù)的單調區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知,
(Ⅰ)當時,求曲線在點處的切線方程;
(Ⅱ)若在處有極值,求的單調遞增區(qū)間;
(Ⅲ)是否存在實數(shù),使在區(qū)間的最小值是3,若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(I)若函數(shù)上是減函數(shù),求實數(shù)的最小值;
(2)若,使()成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com