分析 首先利用約束條件得到可行域,結(jié)合n的幾何意義求出其最大值,然后對二項式的通項求常數(shù)項.
解答 解:已知得到可行域如圖:n=2x+y-2變形為y=-2x+2+z,當此直線經(jīng)過圖中B(2,4)時,直線在y軸的截距最大,z最大,所以z 的最大值為2×2+4-2=6,
所以(2$\sqrt{x}$+$\frac{1}{x}$)n二項展開式中的通項為${C}_{6}^{r}(2\sqrt{x})^{r}(\frac{1}{x})^{6-r}={2}^{r}{C}_{6}^{r}{x}^{\frac{3}{2}r-6}$,
當r=4此項為常數(shù)項,所以常數(shù)項為24${C}_{6}^{4}$=240;
故答案為:240.
點評 本題考查了簡單線性規(guī)劃問題與二項式定理的運用;關鍵是利用數(shù)形結(jié)合正確求出n,然后由二項展開式通項求常數(shù)項.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若?服從正態(tài)分布N(1,2),且P(?>2)=0.1,則P(0<?<2)=0.2 | |
B. | 命題:“?x>1,x2>1”的否定是“?x≤1,x2≤1” | |
C. | 直線ax+y+2=0與ax-y+4=0垂直的充要條件為a=±1 | |
D. | “若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0” |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | n | B. | 2n-1 | C. | n2 | D. | 2n2-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | m<n<p | B. | m<p<n | C. | p<m<n | D. | p<n<m |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com