a,bx,yR,且a2+b2=1,x2+y2=1,試證:|ax+by|≤1。

答案:
解析:

證明:|ax+by|≤1

      

(ax+by)2≤1

    

a2x2+2abxy+b2y2≤1

        

a2x2+2abxy+b2y2≤(a2+b2)(x2+y2)

       

    (bxay)2≥0,這顯然成立。

故|ax+by|≤1。


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設a,b,x,y∈R+,且x2+y2=r2(r>0),求證:
a2x2+b2y2
+
a2y2+b2x2
≥r(a+b).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b,x,y∈R且滿足a2+b2=m,x2+y2=n,求ax+by的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b,x,y∈R+,且a2+b2=1,x2+y2=1,試證:ax+by≤1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b,x,y∈R+
3x-y-6≤0
x-y+2≥0
,若z=ax+by的最大值為2,則
2
α
+
3
b
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設a,b,x,y∈R+,且a2+b2=1,x2+y2=1,試證:ax+by≤1.

查看答案和解析>>

同步練習冊答案