用數(shù)學(xué)歸納法證明:

12-22+32-42+…+(2n-1)2-(2n)2=-n(2n+1).

答案:
解析:

  證明:(1)當(dāng)n=1時,

  左邊=12-22=-3,

  右邊=-1×(2×1+1)=-3,等式成立.

  (2)假設(shè)當(dāng)n=k時,等式成立,即

  12-22+32-42+…+(2k-1)2-(2k)2

 。剑璳(2k+1),

  則當(dāng)n=k+1時,

  12-22+32-42+…+(2k-1)2-(2k)2+(2k+1)2-[2(k+1)]2

 。剑璳(2k+1)+(2k+1)2-[2(k+1)]2

  =-2k2-5k-3=-(k+1)(2k+3)

 。剑(k+1)[2(k+1)+1]

  即當(dāng)n=k+1時,等式成立.

  由(1)(2)可知,對任何n∈N+,等式成立.

  思路分析:當(dāng)n=k+1時,左邊的項應(yīng)該增加兩項(2k+1)2-(2k+2)2


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,n>1,n∈N*.用數(shù)學(xué)歸納法證明:
an+bn
2
≥(
a+b
2
)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n為正整數(shù).
(Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時,(1+x)m≥1+mx;
(Ⅱ)對于n≥6,已知(1-
1
n+3
)n
1
2
,求證(1-
m
n+3
)n<(
1
2
)m
,m=1,2…,n;
(Ⅲ)求出滿足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明貝努利(Bernoulli)不等式:如果x是實數(shù),且x>-1,x≠0,n為大于1的自然數(shù),那么有(1+x)n>1+nx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:函數(shù)f(x)=-
1
6
x3+
1
2
x2+x
,x∈R.
(Ⅰ)求證:函數(shù)f(x)的圖象關(guān)于點A(1,
4
3
)
中心對稱,并求f(-2007)+f(-2006)+…+f(0)+f(1)+…+f(2009)的值.
(Ⅱ)設(shè)g(x)=f′(x),an+1=g(an),n∈N+,且1<a1<2,求證:
(。┱堄脭(shù)學(xué)歸納法證明:當(dāng)n≥2時,1<an
3
2
;
(ⅱ)|a1-
2
|+|a2-
2
|+…+|an-
2
|<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明:(cosα+isinα)n=cosnα+isinnα,(其中i為虛數(shù)單位)

查看答案和解析>>

同步練習(xí)冊答案