已知函數(shù)f(x)對任意的實數(shù)滿足=f+f(-x-2),且f(0)≠0,則此函數(shù)為________函數(shù)(填奇偶性),并在你學過的函數(shù)中寫出一個滿足這些條件的函數(shù)(只須寫出一個即可)________.

答案:
解析:

2f(0)·f(0)=f(0+0)+f(0-0)f(0)=0或f(0)=1.

由f(0)≠0f(0)=1;令2f(0)f(x)=f(0+x)+f(0-x)

f(x)=f(-x)此函數(shù)為偶函數(shù);如f(x)=cosx(x∈R)或f(x)=1(x∈R)等等.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若實數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
(1)若x2-1比3接近0,求x的取值范圍;
(2)對任意兩個不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近2ab
ab
;
(3)已知函數(shù)f(x)的定義域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學 來源:北京市海淀區(qū)2012屆高三下學期期中練習數(shù)學文科試題 題型:022

已知函數(shù)f(x)=則f(f(x))=________;

下面三個命題中,所有真命題的序號是________.

①函數(shù)f(x)是偶函數(shù);

②任取一個不為零的有理數(shù)T,f(x+T)=f(x)對x∈R恒成立;

③存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))使得△ABC為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年普通高等學校招生全國統(tǒng)一考試、理科數(shù)學(上海卷) 題型:044

若實數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠離m.

(1)若x2-1比1遠離0,求x的取值范圍;

(2)對任意兩個不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠離2ab;

(3)已知函數(shù)f(x)的定義域.任取x∈D,f(x)等于sinx和cosx中遠離0的那個值.寫出函數(shù)f(x)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學 來源:2010年全國普通高等學校招生統(tǒng)一考試、文科數(shù)學(上海卷) 題型:044

若實數(shù)xy、m滿足|xm|<|ym|,則稱xy接近m

(1)若x21比3接近0,求x的取值范圍;

(2)對任意兩個不相等的正數(shù)a、b,證明:a2b+ab2a3b3接近2ab;

(3)已知函數(shù)f(x)的定義域D={x|x,k∈Z,x∈R}.任取x∈Df(x)等于1+sinx和1-sinx中接近0的那個值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學 來源:上海高考真題 題型:解答題

若實數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠離m,
(Ⅰ)若x2-1比1遠離0,求x的取值范圍;
(Ⅱ)對任意兩個不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠離2ab;
(Ⅲ)已知函數(shù)f(x)的定義域D={x|x≠,k∈Z,x∈R},任取x∈D,f(x)等于sinx和cosx中遠離0的那個值.寫出函數(shù)f(x)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

查看答案和解析>>

同步練習冊答案