(本題滿分13分) 已知函數(shù),函數(shù)
(I)當時,求函數(shù)的表達式;
(II)若,且函數(shù)在上的最小值是2 ,求的值;
(III)對于(II)中所求的a值,若函數(shù),恰有三個零點,求b的取值范圍。
(Ⅰ)當時,函數(shù). (II)1;
(III)。
【解析】本試題主要是考查了導數(shù)在研究函數(shù)中的運用。利用導數(shù)求解最值和方程的解,以及解析式的求解的綜合運用。
(1)∵,去掉絕對值然后分情況求解導數(shù)得到結(jié)論。
∴當時,; 當時,
∴當時,; 當時,.
∴當時,函數(shù).
(2)由⑴知當時,,
∴當時, 當且僅當時取等號.由,得a=1 (8分)
分析導數(shù)的運用。
(3)構(gòu)造函數(shù)
所以,方程,有兩個不等實根,且不含零根。等價轉(zhuǎn)化后得到。
解: (Ⅰ)∵,
∴當時,; 當時,
∴當時,; 當時,.
∴當時,函數(shù). (4分)
(Ⅱ)∵由⑴知當時,,
∴當時, 當且僅當時取等號.由,得a=1 (8分)
令,得或x=b
(1) 若b>1,則當0<x<1時,,當1<x<b,時,當x>b時,;
(2) 若b<1,且b則當0<x<b時,,當b<x<1時,,當x>1時,
所以函數(shù)h(x)有三個零點的充要條件為或解得或
綜合: (13分)
另解:
所以,方程,有兩個不等實根,且不含零根
解得: (13分)
科目:高中數(shù)學 來源:2015屆天津市高一第一次月考數(shù)學試卷(解析版) 題型:解答題
(本題滿分13分)
已知集合,,.
(1) 求,; (2) 若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2012屆浙江省寧波萬里國際學校高三上期中理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分13分)的三個內(nèi)角依次成等差數(shù)列.
(Ⅰ)若,試判斷的形狀;
(Ⅱ)若為鈍角三角形,且,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年北京市朝陽區(qū)高三上學期期末考試理科數(shù)學 題型:解答題
(本題滿分13分)
在銳角中,,,分別為內(nèi)角,,所對的邊,且滿足.
(Ⅰ)求角的大。
(Ⅱ)若,且,,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源:重慶市09-10學年高二下學期5月月考(數(shù)學文) 題型:解答題
(本題滿分13分)在展開式中,求:
(1)第6項; (2) 第3項的系數(shù); (3)常數(shù)項。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省龍巖市高三上學期期末考試數(shù)學理卷(一級學校) 題型:解答題
(本題滿分13分)
如圖,在五面體ABCDEF中,FA平面ABCD,AD//BC//FE,ABAD,AF=AB=BC=FE=AD.
(Ⅰ)求異面直線BF與DE所成角的余弦值;
(Ⅱ)在線段CE上是否存在點M,使得直線AM與平面CDE所成角的正弦值為?若存在,試確定點M的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com