12.已知集合$M=\left\{{x|\frac{2}{x}<1}\right\},N=\left\{{y|y=lg({x^2}+1)}\right\}$,則N∩∁RM=[0,2].

分析 先分別求出集合M和N,由此能求出N∩∁RM.

解答 解:集合$M=\left\{{x|\frac{2}{x}<1}\right\},N=\left\{{y|y=lg({x^2}+1)}\right\}$,
∴M=(-∞,0)∪(2,+∞),N=[0,+∞),
∴N∩CRM=[0,2].
故答案為:[0,2].

點評 本題考查集合交集的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意交集、補(bǔ)集性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)復(fù)數(shù)z滿足(2z-i)(2-i)=5,則z=( 。
A.1+iB.1-iC.1+2iD.1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.過點P(0,-1)且和圓C:x2+y2-2x+4y+4=0相切的直線方程為 ( 。
A.y+1=0或x=0B.x+1=0或y=0C.y-1=0或x=0D.x-1=0或y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在多面體PQR-ABCD中,底面ABCD是平行四邊形,AB=2AD=2,∠DAB=60°,PD⊥面ABCD,PD=1,PQ∥DA,PR∥DC,且$PQ=\frac{1}{2}DA,PR=\frac{1}{2}DC$.
(1)求證:平面PQB⊥平面PBD; 
(2)求三棱錐P-BQR的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.等差數(shù)列{an},{bn}的前n項和分別為Sn,Tn,若$\frac{S_n}{T_n}=\frac{38n+14}{2n+1}({n∈{N_+}})$,則$\frac{a_6}{b_7}$=( 。
A.16B.$\frac{242}{15}$C.$\frac{432}{23}$D.$\frac{494}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知x,y滿足$\left\{\begin{array}{l}|{x-y}|≤2\\|{x+y}|≤1\end{array}\right.$,則z=2x-y的最大值為(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{7}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項和為Sn(n∈N*),且滿足an+Sn=2n+1.
(1)求數(shù)列{an}的通項公式;
(2)求證:$\frac{1}{{2{a_1}{a_2}}}+\frac{1}{{{2^2}{a_2}{a_3}}}+…+\frac{1}{{{2^n}{a_n}{a_{n+1}}}}<\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.f(x)=ex(2x-1)-ax+a(a∈R),e為自然對數(shù)的底數(shù).
(1)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在實數(shù)x∈(1,+∞),x滿足f(x)<0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sin(\frac{π}{3}x),(-1≤x<0)}\\{f(x-2),(x≥0)}\end{array}\right.$,則f(2013)=( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.0

查看答案和解析>>

同步練習(xí)冊答案