A. | $\frac{3}{2}$ | B. | $\frac{5}{2}$ | C. | $\frac{7}{2}$ | D. | $\frac{9}{2}$ |
分析 作出可行域,平移目標直線可得取最值時的條件,求交點代入目標函數(shù)即可.
解答 解:由$\left\{\begin{array}{l}|{x-y}|≤2\\|{x+y}|≤1\end{array}\right.$,則$\left\{\begin{array}{l}{-2≤x-y≤2}\\{-1≤x+y≤1}\end{array}\right.$,滿足條件的可行域為,
當目標直線過直線x-y=2與直線x+y=1的交點A($\frac{3}{2}$,-$\frac{1}{2}$)時取最大值,
故最大值為z=2×$\frac{3}{2}$-(-$\frac{1}{2}$)=$\frac{7}{2}$
故答案為:$\frac{7}{2}$
點評 本題考查簡單線性規(guī)劃,準確作圖是解決問題的關(guān)鍵,屬中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{6}{5}$ | B. | $\frac{{\sqrt{26}}}{26}$ | C. | $\frac{{3\sqrt{2}}}{5}$ | D. | $\frac{{3\sqrt{26}}}{26}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | π | B. | $\frac{2}{3}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | $\frac{{2\sqrt{2}}}{3}π$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2187 | B. | 4681 | C. | 729 | D. | 3125 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com