某種細(xì)胞每隔30分鐘分裂1次,1個分裂成2個,則1個這樣的細(xì)胞經(jīng)過4小時30分鐘后,可得到的細(xì)胞個數(shù)為( 。
A、512B、511
C、1024D、1023
考點:數(shù)列的應(yīng)用
專題:應(yīng)用題,等差數(shù)列與等比數(shù)列
分析:根據(jù)指數(shù)函數(shù)產(chǎn)生的背景,可判斷出a×2n,a=1,n=9,代入可判斷.
解答: 解:∵某種細(xì)胞每隔30分鐘分裂1次,1個分裂成2個,則1個這樣的細(xì)胞經(jīng)過4小時30分鐘后,
∴共分裂9次,
∴可得到的細(xì)胞個數(shù)為29=512,
故選:A
點評:本題考查了數(shù)列在實際問題中的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosax,sinax),
b
=(
3
cosax,-cosax),其中a>0,若函數(shù)f(x)=
a
b
的圖象與直線y=m(m>0)相切,且切點橫坐標(biāo)成公差為π的等差數(shù)列.
(1)求a和m的值;
(2)在△ABC中,a、b、c分別是角A、B、C的對邊.若f(
A
2
)=
3
2
,且a=4,求△ABC面積的最大值及此時b、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
2
sin2x+cos2x-
3
2

(I)求函數(shù)f(x)的最小正周期及在區(qū)間[0,
π
2
]
的最大值
(Ⅱ)在△ABC中,∠A、∠B、∠C所對的邊分別是a,b,c,a=2,f(A)=-
1
2
,求△ABC周長L的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,集合A={x|x≥0},B={x|-1<x<3},則(∁UA)∩B=( 。
A、{x|-1<x<0}
B、{x|0<x<1}
C、{x|-3<x<0}
D、{x|x≥3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}滿足a1+a2=10,a2+a3=15,則an=(  )
A、4×(
3
2
)n
B、4×(
2
3
)n
C、4×(
2
3
)n-1
D、4×(
3
2
)n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知B(-3,0),C(3,0),△ABC中BC邊上的高為3,求△ABC的垂心H的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知2 
1
x
>xa對任意x∈(0,1)成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,F(xiàn)1、F2是橢圓
x2
a2
+
y2
b2
=1的兩個焦點,O為坐標(biāo)原點,P是橢圓上的一點,且滿足|F1F2|=2|OP|,若∠PF2F1=5∠PF1F2,則橢圓的離心率為( 。
A、
3
2
B、
6
3
C、
2
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)在R上的導(dǎo)函數(shù)是f′(x),若f(x)=f(4-x),且當(dāng)x∈(-∞,2)時,(x-2)•f′(x)<0.角A、B、C是銳角△ABC的三個內(nèi)角,下面給出四個結(jié)論:
(1)f(sin
3
)>f(cos
4
)
;     
(2)f(2log23)<f(log0.50.1);
(3)f(sinA+sinB)>f(cosA+cosB);
(4)f(sinB-cosB)>f(cosA-sinC);
則上面這四個結(jié)論中一定正確的有( 。﹤.
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案