分析 (1)曲線C的極坐標(biāo)方程為ρ=4cosθ,即ρ2=4ρcosθ,把ρ2=x2+y2,x=ρcosθ,代入可得C的直角坐標(biāo)方程.把直線l的參數(shù)方程代入上式并整理得t2+6tcosα+5=0.令△=0,解出即可得出點(diǎn)M的直角坐標(biāo).
(2)設(shè)A,B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1,t2,則t1+t2=-6cosα.利用中點(diǎn)坐標(biāo)公式即可得出.
解答 解:(1)曲線C的極坐標(biāo)方程為ρ=4cosθ,即ρ2=4ρcosθ,把ρ2=x2+y2,x=ρcosθ,代入可得C的直角坐標(biāo)方程為:x2-4x+y2=0,即(x-2)2+y2=4.
把直線l的參數(shù)方程$\left\{\begin{array}{l}x=-1-tcosα\\ y=tsinα\end{array}\right.(t$為參數(shù)$α∈(0,\frac{π}{2})$)代入上式并整理得t2+6tcosα+5=0.
令△=(6cosα)2-20=0,解得cosα=$\frac{\sqrt{5}}{3}$,sinα=$\frac{2}{3}$,t=-$\sqrt{5}$.
∴點(diǎn)M的直角坐標(biāo)為($\frac{2}{3}$,-$\frac{2\sqrt{5}}{3}$).
(2)設(shè)A,B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1,t2,則t1+t2=-6cosα.
線段AB的中點(diǎn)對(duì)應(yīng)的參數(shù)為$\frac{1}{2}$(t1+t2)=-3cosα.
則-1+3cos2α=$\frac{1}{2}$,解得cosα=$\frac{\sqrt{2}}{2}$,α=$\frac{π}{4}$.
∴直線l的普通方程為x-y+1=0.
點(diǎn)評(píng) 本題考查了參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程、中點(diǎn)坐標(biāo)公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $-\frac{2}{3}$ | C. | $\frac{{\sqrt{5}}}{3}$ | D. | $-\frac{{\sqrt{5}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | -9 | C. | 4 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com