如圖,棱長為
的正方體
中,
為線段
上的動點,則下列結(jié)論錯誤的是
試題分析:
面
,∴A正確;
面
,∴B正確;當(dāng)
時,
為鈍角,∴C錯;將面
與面
沿
展成平面圖形,線段
即為
的最小值,解三角形易得
=
, ∴D正確.故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖5:正方體
ABCD-
A1B1C
1D
1,過線段
BD
1上一點P(P
平面
AC
B1)作垂直于D
1B的平面分別交過D
1的三條棱于E、F、G.
(1)求證:平面EFG∥平面
A C
B1,并判斷三角形類型;
(2)若正方體棱長為
a,求△EFG的最大面積,并求此時EF與
B1C的距離.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖所示,平面
平面
,且四邊形
為矩形,四邊形
為直角梯形,
,
,
,
.
(1)求證
平面
;(2)求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知四棱錐
的底面為直角梯形,
,
底面
,且
,
,
是
的中點.
(1)證明:面
面
;
(2)求
與
所成的角的余弦值;
(3)求二面角
的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,四棱錐
中,
,底面
為梯形,
,
,且
.(10分)
(1)求證:
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
在平行四邊形
中,
,
.將
沿
折起,使得平面
平面
,如圖.
(1)求證:
;
(2)若
為
中點,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖所示,空間中有一直角三角形
,
為直角,
,
,現(xiàn)以其中一直角邊
為軸,按逆時針方向旋轉(zhuǎn)
后,將
點所在的位置記為
,再按逆時針方向繼續(xù)旋轉(zhuǎn)
后,
點所在的位置記為
.
(1)連接
,取
的中點為
,求證:面
面
;
(2)求
與平面
所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖所示,AF、DE分別是⊙O、⊙O
1的直徑,AD與兩圓所在的平面均垂直,AD=8.BC是⊙O的直徑,AB=AC=6,
OE∥AD.
(1)求二面角B-AD-F的大。
(2)求直線BD與EF所成的角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知
,
是不重合的兩條直線,
,
是不重合的兩個平面.下列命題:①若
⊥
,
⊥
,則
∥
; ②若
⊥
,
⊥
,則
∥
;③若
∥
,
⊥
,則
⊥
;④若
∥
,
,則
∥
.其中所有真命題的序號是
.
查看答案和解析>>