如圖所示,AF、DE分別是⊙O、⊙O1的直徑,AD與兩圓所在的平面均垂直,AD=8.BC是⊙O的直徑,AB=AC=6,
OE∥AD.
(1)求二面角B-AD-F的大;
(2)求直線BD與EF所成的角的余弦值.
(1) 二面角B—AD—F的大小為45° (2) 直線BD與EF所成的角的余弦值為
 (1)∵AD與兩圓所在的平面均垂直,

∴AD⊥AB,AD⊥AF,
故∠BAF是二面角B—AD—F的平面角.
依題意可知,ABFC是正方形,
∴∠BAF=45°.
即二面角B—AD—F的大小為45°;
(2)以O(shè)為原點(diǎn),CB、AF、OE所在直線為坐標(biāo)軸,建立空間直角坐標(biāo)系(如圖所示),
則O(0,0,0),
A(0,-3,0),B(3,0,0),D(0,-3,8),
E(0,0,8),F(xiàn)(0,3,0),
=(-3,-3,8),=(0,3,-8).
cos〈,〉= ==-.
設(shè)異面直線BD與EF所成角為,則
cos=|cos〈,〉|=.
即直線BD與EF所成的角的余弦值為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知側(cè)棱垂直于底面的四棱柱,ABCD-A1B1C1D1的底面是菱形,且AD="A" A1,
點(diǎn)F為棱BB1的中點(diǎn),點(diǎn)M為線段AC1的中點(diǎn).
(1)求證: MF∥平面ABCD
(2)求證:平面AFC1⊥平面ACC1A1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,為圓柱的母線,是底面圓的直徑,,分別是,的中點(diǎn),
(1)證明:;
(2)證明:
(3)假設(shè)這是個(gè)大容器,有條體積可以忽略不計(jì)的小魚能在容器的任意地方游弋,如果魚游到四棱錐 內(nèi)會(huì)有被捕的危險(xiǎn),求魚被捕的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知三點(diǎn)不共線,為平面外任一點(diǎn),若由確定的一點(diǎn)與三點(diǎn)共面,則             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示的多面體是由底面為的長(zhǎng)方體被截面所截面而得到的,其中.
(Ⅰ)求的長(zhǎng);
(Ⅱ)求二面角E-FC1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè),試問是否存在實(shí)數(shù),使成立?如果存在,求出;如果不存在,請(qǐng)寫出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,PD⊥平面ABCD,且四邊形ABCD為正方形,AB=2,E是PB的中點(diǎn),
cos〈,〉=.
(1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫出點(diǎn)E的坐標(biāo);
(2)在平面PAD內(nèi)求一點(diǎn)F,使EF⊥平面PCB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,棱長(zhǎng)為的正方體中,為線段上的動(dòng)點(diǎn),則下列結(jié)論錯(cuò)誤的是
A.
B.平面平面
C.的最大值為
D.的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若向量,則這兩個(gè)向量的位置關(guān)系是___________。

查看答案和解析>>

同步練習(xí)冊(cè)答案